Problem 1

(a) \(\phi^+ e^{-i\phi} \). Under phase transformations

\[L \rightarrow e^{-i\phi'} e^{i\phi} (\partial \mu \phi^+)(x^\nu \phi) = L \]

The Noether current is

\[\delta J^\mu = \frac{\partial L}{\partial (\partial_\nu \phi)} \delta \phi + \frac{\partial L}{\partial (\partial_\nu \phi^+)} \delta \phi^+ \]

\[\delta \phi = i \partial \phi, \quad \delta \phi^+ = -i \partial \phi^+ \]

\[\delta J^\mu = i \partial \phi^+ (\partial_\nu \phi) - i \partial \phi (\partial_\mu \phi^+) \]

The finite current is (keeping an \(i \) to make it hermitean)

\[J^\mu = i (\phi^+ \partial_\mu \phi - \partial_\mu \phi^+ \phi) \]

(b) \[S = \int d^4x (\partial_\mu \phi)(\partial^\mu \phi)(x) \rightarrow \]

\[S' = \int d^4x'^4 (\partial_\mu ^\prime \phi(x'))(\partial^\mu ^\prime \phi(x')) \text{. Next we use} \]

\[d^4x = e^4 d^4x', \quad \phi(x') = e \phi(x), \quad \partial_\mu ^\prime \equiv \frac{\partial}{\partial x'^\mu} = e \partial_\mu \]

\[S' = \exp(-4a + 2a + 2a) \int d^4x (\partial_\mu \phi)(\partial^\mu \phi) = S \]
Thus \(S \) is invariant under dilatations.

\[
(c) \quad \phi(x') = e^a \phi(x), \quad \text{or} \quad \phi(e^a x) = e^a \phi(x),
\]

thus \(\phi(x) = e^{-a} \phi(e^a x) \) expanding for small \(a \)

we get

\[
\phi'(x) \sim (1 + a) \phi(x + a x) \sim (1 + a) \left[\phi + a x \mu \partial^\mu \phi \right]
\]

\[
\sim \phi + a (\phi + x \mu \partial^\mu \phi) \quad \Rightarrow
\]

\[
\phi'(x) = \phi + a (1 + x \mu \partial^\mu) \phi \quad \text{and}
\]

\[
\delta \phi(x) = \phi'(x) - \phi(x) = a (1 + x \cdot \partial) \phi
\]

Similarly \(\delta \phi^+ = a (1 + x \cdot \partial) \phi^+ \) since \(a \in \mathbb{R} \).

Then we have

\[
\delta J^\mu = \frac{\Theta^\mu}{\Theta(\partial \mu \phi)} \delta \phi + \frac{\Theta^\mu}{\Theta(2 \mu \phi^+)} \delta \phi^+ + \Theta^\mu x\partial^\mu
\]

where \(x' = e^{-a} x \sim 1 - a x \Rightarrow \delta x^\mu = -a x^\mu \).
and using \(\frac{\partial \phi}{\partial (\partial \phi)} = \phi \phi^+ \)

\[S J^\mu = \frac{1}{a^2} \left\{ (\partial \phi^+)(1+x\cdot\partial) \phi + (1+x\cdot\partial) \phi^+ (\partial \phi) - x^\mu \partial \right\} \]

and the finite current is

\[J^\mu = (\partial \phi^+)(1+x\cdot\partial) \phi + (1+x\cdot\partial) \phi^+ \partial \phi - x^\mu \partial \]

Check current conservation on the solutions to the equations of motion \(\Box \phi = 0 \), \(\Box \phi^+ = 0 \):

\[\partial_\mu J^\mu = 2 (\partial \phi^+)(\partial \phi) + (\partial \phi^+)(\partial \phi) - 4 (\partial \phi^+ \partial \phi) - x^\mu \partial \]

\[\partial_\mu x^\mu = 0 \]

(d) Again it is very convenient to work at the level of the action. For the mass term we have

\[S_m \rightarrow -m^2 \int d^4 x' \phi^+(x') \phi(x') = -m^2 e^{- \frac{1}{4} \lambda \int d^4 x' (\phi^+(x') \phi(x'))^2} \]

\[S_m \rightarrow e^{- \frac{1}{4} \lambda \int d^4 x' (\phi^+(x') \phi(x'))^2} \]

\[\frac{1}{4} \lambda \int d^4 x' (\phi^+(x') \phi(x'))^2 \]

\[\rightarrow - \frac{4}{4} \lambda \int d^4 x (\phi^+ \phi)^2 \]

Then

\[S_\lambda \rightarrow -\lambda \int d^4 x' \left((\phi^+(x') \phi(x'))^2 \right) = - \lambda e^{- \frac{4}{4} \lambda \int d^4 x (\phi^+ \phi)^2} \]

\[= \int d^4 x (\phi^+ \phi)^2 \]
Here \(S_1 \rightarrow S_1 \) under a dilatation. Hence for invariance we need \(m = 0 \), and \(\lambda \) arbitrary.

The dimensions: the key insight is that

\(S \) is ADIMENSIONAL \(\Rightarrow [S] = 0 \)

- \([d^4 x] = -4 \) (in energy units).

What is the dimension of \(\phi \)? From the kinetic term \(\int d^4 x \left(\partial \phi \right) \left(\partial \phi \right) \) we get, imposing that the action is dimensionless,

\[-4 + 1 + 1 + 2[\phi] = 0 \Rightarrow [\phi] = 1\]

(since \([\partial] = +1\) \(\Rightarrow \)

\[\int d^4 x \phi \phi^* \] \(= -4 + 2 = -2 \) \(\Rightarrow [m^2] = +2 \)

\(\Rightarrow [m] = 1 \) has the dimension of a mass! \[[m] = 1 \]

Next for \(S_1 \) :
\[
[\lambda] + [d^4x] + [\phi^2\phi^2] = 0
\Rightarrow \\
[\lambda] = +4 - 4 = 0
\Rightarrow \\
\lambda \text{ is dimensionless}
\]
\[\Pi = \frac{\Theta \phi}{\Theta \phi} = \phi \]

\[\mathcal{H}_0(\pi, \phi) = \pi (\Theta \phi) - L_0 = (\Theta \phi Y \Theta \phi) - L_0 = \]

\[= \pi^2 - \frac{1}{2} \pi^2 + \frac{1}{2} (\vec{\phi} \cdot (\vec{\phi}) + \frac{1}{2} m^2 \phi^2 \]

\[\Rightarrow \]

\[\mathcal{H}_0(\pi, \phi) = \frac{1}{2} \pi^2 + \frac{1}{2} (\vec{\phi} \cdot (\vec{\phi}) + \frac{1}{2} m^2 \phi^2 \]

Then \[H_0 = \int d^3 x \; \mathcal{H}_0 \quad \text{and} \]

\[i^*(\Theta \phi)(x, t) = \left[\phi(x, t), H_0 \right] = \int d^3 y \left[\phi(x, t), \frac{i}{2} \pi(y, t) \right] \]

(\phi commutes with itself and with \(\vec{\phi} \) thus we can drop these terms in \(H_0 \) containing \(\phi \) and \(\vec{\phi} \))

\[= \frac{2}{2} \int d^3 y \left[\phi(x, t), \pi(y, t) \right] = \]

\[\left[i \delta^{(3)}(x-y) \right] \]

\[= i \int d^3 y \; \delta^{(3)}(x-y) \; \pi(y, t) = i \pi(x, t) \quad \Rightarrow \]

\[(\Theta \phi) = \pi \]

(20)
(c) The Dyson expansion for the S-matrix reads

\[S = 1 + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} \int dt_{1} \ldots dt_{n} \ T(H_{1}(t_{1}) \ldots H_{n}(t_{n})) \]

where \(H_{ij} \) is the interaction Hamiltonian, or

\[S = 1 + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} \int dx_{1} \ldots dx_{n} \ T(H_{1}(x_{1}) \ldots H_{n}(x_{n})) \]

In an case \(H_{ij} = - \frac{\partial^{2}}{\partial x^{2}} + \frac{1}{4} \phi \phi^{\dagger} \Rightarrow \]

\[S = 1 + \sum_{n=1}^{\infty} \frac{(-i/4)^{n}}{n!} \int dx_{1} \ldots dx_{n} \ T(\phi^{\dagger}(x_{1}) \ldots \phi^{\dagger}(x_{n})) \]

(d) To the first order (in \(\lambda \)) we have

\[S_{fi}^{(1)} = \langle 0 | e(p_{3}) a(p_{4}) (-i \lambda) \int dx : \phi(x) : e(p_{1}) a^{\dagger}(p_{2}) | 0 \rangle \]

out of \(\phi^{4} \) we need the term with

\(2 \phi^{4} \) and with \(2 \phi^{+} \phi^{-} \), this only will survive.

In the product \(\phi^{4} = (\phi^{+} \phi^{-})(\phi^{+} \phi^{-})(\phi^{+} \phi^{-})(\phi^{+} \phi^{-}) = \]

\(= \binom{4}{2} \phi^{+} \phi^{-} \phi^{+} \phi^{-} + \) terms which do not have \(2 \phi^{+} \) and \(2 \phi^{-} \).