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 Forth lesson

• Correlated and uncorrelated networks


• Exponential random graphs in the uncorrelated limit


• Microcanonical ensemble (Configuration model)


• 2-star model and Strauss model



Correlated and Uncorrelated 
networks
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Description of  

correlated and uncorrelated 
networks  

in terms of degree classes



A network has  
degree correlations 

if the probability that a random 
link is connected to a node of 

degree k 
depends on the degree k’  

of the node at  
the other end of the link

πk|k′ 



Assortative and  
disassortative networks

In assortative networks 
“hubs connect preferentially to hubs” 

In disassortative networks  
“hubs connect preferentially to  

low degree nodes”



Assortative and  
disassortative networks

Social networks  
 are generally assortative 
Protein-interaction networks  

 are disassortative. 
Technological networks  

   are generally disassortative  
 (ex. Internet). 



Measure of degree 
correlations

The most direct measure of the matrix         is the direct measure of the 
probability 


This method has some limitations


A. The network might be too sparse to have enough statistics to 
reconstruct the full matrix


B. In presence of large degree the model cannot be compared directly with 
the uncorrelated network limit. In order to have a null model usually the 
random swapping of connection is considered.

πk,k′ 



Randomization of a network 
swap of connections

➢Choose two random 
links linking four 
distinct nodes

Maslov & Sneppen 2002



Randomization of a network 
swap of connections

➢Choose two random 
links linking four 
distinct nodes 

➢If possible (not 
already existing 
links) swap the 
ends of the links 

Maslov & Sneppen 2002



Randomization of a network 
swap of connections

➢Choose two random 
links linking four 
distinct nodes 

➢If possible (not 
already existing 
links) swap the 
ends of the links 

Maslov & Sneppen 2002



€ 

Direct measurement of degree 
correlations

€ 

The map of     

reveals the correlations in  
the protein interaction map  

S. Maslov and K. Sneppen Science 2002

Probability that nodes of degree k and k’ are connected by a link 

Same probability in randomised networks  

€ 

πk,k′ 

π̃k,k′ 

πk,k′ 

π̃k,k′ 



The average degree of 
neighbour nodes

The average degree of the neighbours of a node is given by


The average degree of the neighbours of nodes of degree k 
is given by


knn(i) =
1
ki

N

∑
j=1

aijkj

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k

=
1

N(k) ∑
i|ki=k

knn(i)



The average degree of 
neighbour nodes

The average degree of the neighbours of  nodes of degree k 

Comments 

• This is a more coarse grained measure for which there is better 
statistics 


• A monotonically increasing  indicates assortative correlations


• A monotonically decreasing indicates disassortative correlations


• A drawback is that in the case in which  is not monotonic we 
cannot classify the correlations. 



Average degree of the neighbour 
of a node of degree k

lo
g(

k n
n(

k)
) Assortative networks  α>0 

Uncorrelated networks α=0 

Disassortative networks α<0

€ 

log (k)

Average degree  
of a neighbour of a  
node of degree k

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k

knn(k) ∼ kα



Disassortative correlations in the  
Internet at the AS level 

€ 

Vazquez et al. PRL (2001)

€ 

The average degree of the neighbours of 

nodes of degree k 


reveals that the 

the Internet at the AS level  is 


disassortative

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k



Newman correlation 
coefficient

The Newman correlation coefficient is a global parameter 
that provides a unique number 


given by


We have a classification of the networks depending on the 
sign of r 

r =
∑k,k′ kk′ (πk,k′ − qkqk′ )

∑k k2qk − (∑k kqk)
2

r > 0  assortative network
r < 0  disassortative network

r ∈ [−1,1]



Description of  

correlated and uncorrelated 
networks  

in terms of node labels



Uncorrelated networks

Definition  

In  uncorrelated networks  
in which  each node i has expected degree       

the probability that  a random link  
connects a node i at one end to a node j at the other end 

is given by 

πij =
k̄ik̄j

(⟨k⟩N )2

k̄i



Uncorrelated networks
 Proposition 

In an uncorrelated network in which each node i has 
expected degree       the probability that a random link is 
connected to node i given that is connected to node j a 
the other end is given by  

Comments 

• The probability    only depends on the degree of node i and is 
independent of  node j 

•  The probability    can be interpreted as the probability that in 
an uncorrelated network we reach  node i by following the link of 
any random node

qi = πi|j =
k̄i

⟨k̄⟩N

k̄i

qi

qi



Proof
Given the the expression 

we want to show that in uncorrelated networks we have 
   

According to the Bayes rule we have 

The denominator reads  

Therefore we have 

πi|j =
k̄i

⟨k̄⟩N
= qi

πi|j =
πij

∑N
j′ =1 πjj′ 

= (
k̄ik̄j

(⟨k̄⟩N )2 ) ( ⟨k⟩N
k̄j ) =

k̄i

⟨k̄⟩N
= qi

πi|j =
πij

∑N
j′ =1 πjj′ 

N

∑
j′ =1

πjj′ =
N

∑
j′ =1

k̄jk̄j′ 

(⟨k̄⟩N )2
=

kj

(⟨k̄⟩N )

πij =
k̄ik̄j

(⟨k⟩N )2



Example

i

j
πij =

2
⟨k̄⟩N

3
⟨k̄⟩N

k̄i

πij =
k̄ik̄j

(⟨k̄⟩N )2

Example

3
⟨k̄⟩N

2
⟨k̄⟩N

The probability that a random link connects  
node i to node j is given by 

The probability that the link connects one end to node i is 

The probability that the link connects the other end to node j is



Marginal probability in  
uncorrelated simple networks

Proposition  
In uncorrelated simple networks the probability that  a node i is linked to a node j 

is given by 

Proof 
In an uncorrelated network the expected number of links between node I and 

node j is given by 

Since the network is by hypothesis simple

pij =
k̄ik̄j

⟨k̄⟩N

nij = 2L̄πij = (⟨k̄⟩N )
k̄ik̄j

(⟨k̄⟩N )2
=

k̄ik̄j

(⟨k̄⟩N )

pij = ⟨aij⟩ = nij =
k̄ik̄j

(⟨k̄⟩N )



Example

i

j
pij = 2

3
⟨k̄⟩N

k̄i

pij =
k̄ik̄j

(⟨k̄⟩N )
Example

3
⟨k̄⟩N

The probability that a node connects  
node i to node j is given by 

The probability that one link of node i 
 connects node i to node j is

Since node i has an expected degree 
there is a factor 2 k̄i = 2



Structural cutoff

Simple uncorrelated networks  
must necessarily have the  

structural cutoff

i.e. the expected degrees of the nodes should be smaller 
than the structural cutoff 

KS = ⟨k̄⟩N

max
i

k̄i = K ≤ KS = ⟨k̄⟩N



Proof
In uncorrelated network the probability that two nodes are connected is  

Therefore taking                                      we must necessarily have 
   

It follows that  

pij =
k̄ik̄j

⟨k̄⟩N
≤ 1∀i, j ∈ {1,2,…, N}

pij =
K2

⟨k̄⟩N
≤ 1

K ≤ KS = ⟨k̄⟩N

k̄i = k̄j = K = max
n

k̄n



The natural cutoff of  
scale-free networks 

For scale-free networks with degree distribution 

the  
natural cutoff  

(maximum degree of  a network of N nodes 
if no constraint on the maximum degree is imposed 

scales like 
€ 

€ 

K = KN ∼ N
1

γ − 1

P(k) ≃ Ck−γ



Natural and structural cutoff of scale-
free networks

For scale-free networks with degree distribution 

the  
natural cutoff is larger than the structural cutoff 

for 
 

€ 

€ 

€ 

γ ≤ 3

P(k) ≃ Ck−γ for k ≫ 1

KN ≫ Ks = ⟨k⟩N



Uncorrelated  
scale-free networks

Sparse uncorrelated networks with  
power-law exponent      must have 

a maximum degree K (cutoff)  
that scales like 

€ 

€ 

K ∼ min [N
1

γ − 1, N
1
2]

γ



Maximum entropy ensembles 

Degree sequence  

as constraint



Expected degree sequence  

as constraint



Canonical ensemble or exponential 
random graph 

with given expected degree sequence

We consider the  

canonical network ensemble  

in which we impose the N soft constraints 

k̄i = ∑
G∈ΩG

P(G)
N

∑
j=1

aij i = 1,2,…, N



Canonical ensemble
Proposition 

The canonical ensemble in which  we fix the expected degree sequence has Gibbs 
measure 


Proof 

This follow directly from the general Gibbs measure of canonical network ensemble 


 


where we take as constraints


 

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

P(a) = P(G) =
e−∑N

i=1 λiFi(G)

Z

P = N, Fi(G) =
N

∑
j=1

aij, Ci = k̄i for i = 1,2…, N



Marginal and equation for 
the Lagrangian multipliers

In the canonical ensemble with given expected degree sequence the marginal probability 
of a link


is given by  


where    are the Lagrangian multipliers fixing the expected degrees, i.e. satisfying


pij =
e−λi−λj

1 + e−λi−λj

(i, j)

pij = ∑
a

aijP(a)

λi

k̄i = ∑
j≠i

pij = ∑
j≠i

e−λi−λj

1 + e−λi−λj



Natural correlations
Since the marginal probabilities


 


do not factorise in terms depending exclusively on single nodes,


the configuration model leads to 


natural correlations


which are 


disassortative

pij =
e−λi−λj

1 + e−λi−λj



Evidence of disassortative 
correlations

Squartini, et al. Randomizing  world trade I. (2011)

⟨knn(k)⟩ = ⟨ 1
ki

N

∑
j=1

kj pij⟩
ki=k

knn(k) = ⟨ 1
ki

N

∑
j=1

kjaij⟩
ki=k

World-Trade networkAverage degree of the neighbour  
of a node in the data

Expected average degree of  
the neighbour of a node in the  
canonical network ensemble



Uncorrelated limit
Only in presence of the structural cutoff


where the expected degree are bounded  


The configuration model is an uncorrelated network and the marginal 
probabilities read


pij =
k̄ik̄j

⟨k⟩N

KS = ⟨k̄⟩N

k̄i ≪ KS = ⟨k̄⟩N ∀i ∈ {1,2,…, N}



Proof
If we assume


We can express the marginals as 


Enforcing the expected degree we get


Therefore 


with Q defined as


pij =
e−λi−λj

1 + e−λi−λj
≃ e−λi−λj

k̄i =
N

∑
j=1

e−λi−λj = e−λiQ

Q =
N

∑
j=1

e−λj =
N

∑
j=1

k̄j

Q

e−λi ≪ 1

e−λi =
k̄i

Q



Proof (continuation)
The equation 


implies that


Therefore


By inserting this equation in the expression for the Lagrangian multiplier  


We get that the initial hypothesis is only satisfied for 

Q2 =
N

∑
j=1

k̄j = ⟨k̄⟩N

Q = ⟨k̄⟩N

e−λi =
k̄i

Q
=

k̄i

⟨k⟩N

e−λi ≪ 1 iff ki ≪ ⟨k̄⟩N

Q =
N

∑
j=1

e−λj =
N

∑
j=1

k̄j

Q

pij =
k̄ik̄j

⟨k⟩N
and



Entropy of the ensemble
Given that the Gibbs entropy for the canonical ensemble 
with given expected degrees factories in single links 
contributions


The entropy of the canonical ensemble 


can be written as  

P(a) = ∏
i<j

paij
ij (1 − pij)1−aij

S = − ∑
a

P(a)ln P(a)

S = −
N

∑
i<j

[pij ln pij + (1 − pij)ln(1 − pij)]



Entropy of the canonical 
ensemble

In the uncorrelated limit, when the marginal probabilities are given by 


The entropy of the canonical ensemble 


can be written as 


S = −
N

∑
i<j

k̄ik̄j

⟨k̄⟩N
ln

k̄ik̄j

⟨k̄⟩N
+ (1 −

k̄ik̄j

⟨k̄⟩N ) ln (1 −
k̄ik̄j

⟨k̄⟩N )

S = −
N

∑
i<j

[pij ln pij + (1 − pij)ln(1 − pij)]

pij =
k̄ik̄j

⟨k̄⟩N



Entropy of the canonical ensemble 
in the uncorrelated network limit

In the uncorrelated limit, the entropy of the canonical ensemble scales like


S ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2{ {

𝒪(N ln N) 𝒪(N)

Only dependent  
on the average degree

Dependent on  
the degree distribution

{

o(N)
Sublinear  

but diverging with N 
for power-law networks



Proof
In the uncorrelated limit, the entropy of the canonical ensemble is given by 


Using the expansions


with 


S = −
1
2

N

∑
i, j

k̄ik̄j

⟨k̄⟩N
ln

k̄ik̄j

⟨k̄⟩N
+ (1 −

k̄ik̄j

⟨k̄⟩N ) ln (1 −
k̄ik̄j

⟨k̄⟩N )

S =
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

ln(1 − x) ≃ − x −
1
2

x2 for x ≪ 1

(1 − x)ln(1 − x) ≃ − x +
1
2

x2 for x ≪ 1

x =
k̄ik̄j

⟨k̄⟩N



Proof
In the uncorrelated limit, the entropy of the canonical ensemble scales 
like


Using the entropy of the random graph G(N,p) we get


can be written as 


S ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

S ≃ SG(N,p=⟨k̄⟩/N) −
N

∑
i=1

k̄i ln k̄i + N⟨k̄⟩ln(⟨k̄⟩) −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

SG(N,p=⟨k⟩/N ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) − N⟨k̄⟩ln⟨k̄⟩ +
1
2

⟨k̄⟩N



Entropy of the canonical ensemble 
in the uncorrelated network limit

In the uncorrelated network limit, the entropy of the canonical ensemble scales like


{ {
𝒪(N ln N) 𝒪(N)

Only dependent  
on the average degree

Dependent on  
the degree distribution

{

o(N)
Sublinear  

but diverging with N 
for power-law networks

S ≃ SG(N,p=⟨k̄⟩/N) −
N

∑
i=1

k̄i ln k̄i + N⟨k̄⟩ln(⟨k̄⟩) −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2



True degree distribution of 
node I in the uncorrelated limit

In the uncorrelated network limit 


the probability that node i has degree 


is given by a Poisson distribution 


with average given by the expected degree     of node i


ℙ(ki = k) =
k̄k

i

k!
e−k̄i

ki

k̄i



Microcanonical network 
ensemble 

Configuration model



Microcanonical network ensemble 
The configuration model

Probability of a network  

Ensemble of networks with exact      
 degree sequence     

P(G) =
1

ZM

N

∏
i=1

δ ki,
N

∑
j=1

aij



Graphicality

A degree sequence is graphical 


if it is the degree sequence of 


at  least a simple network


 Not all degree sequence are graphical!



Erdö-Gallai Theorem
A non-decreasing degree sequence 


is graphical if and only if the following two conditions are 
satisfied:


1. the sum of the degree is even;


2. for all                we have
1 ≤ m < N

m

∑
i=1

ki ≤ m(m − 1) +
N

∑
i=m+1

min(m, ki)

{k1, k2, …, kN}



Solution to graphicality 
problem

• Check directly for graphicality of the degree sequence


• If the degree sequence is not graphical search for minimal 
modifications that can make the degree sequence 
graphical


• Start from the degree sequence of a real network (null 
model)



Generation of networks in 
the configuration model

A. Consider a graphical degree sequence


B. Assign      half-stubs to each node i


C. Randomly match the half-stubs


D. If in the process tadpoles or multiple edges are 
generated start from point B.

ki

{k1, k2, …, kN}



Example
{k1, k2, k3, k4, k5} = {2,3,4,1,2}

1

2

3

4

5

Assign       half-stubs on each node ki i



Example
{k1, k2, k3, k4, k5} = {2,3,4,1,2}

1

2

3

4

5

(1,1): Tadpole

(2,5): Multiple edge

This network realisation should be discarded

Randomly match the half-stubs



Example
{k1, k2, k3, k4, k5} = {2,3,4,1,2}

1

2

3

4

5

Restart from the beginning



Example
{k1, k2, k3, k4, k5} = {2,3,4,1,2}

1

2

3

4

5

Randomly match the half-stubs

This network realisation is viable



Entropy of the micro 
canonical ensemble

Proposition 

The entropy of the micro canonical ensemble is given by 


Proof 

In fact we have


Therefore 


S = − ∑
G∈ΩG|{Fμ(G)=Cμ}μ=1,2…,P

1
ZM

ln ( 1
ZM ) = ln ZM

Σ = − ∑
G∈ΩG|{Fμ(G)=Cμ}μ=1,2…,P

P(G)ln P(G) = ln ZM

P(G) =
1

ZM

P

∏
μ=1

δ (Fμ(G), Cμ) with ZM = ∑
G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ)



Entropy of conjugated 
ensembles

Proposition 

The entropy of a micro canonical ensemble      and the entropy       
of the conjugated canonical ensemble are related by 


 


where 


and where               indicates the Kronecker delta.

Σ = S − Ω

Ω = − ln ∑
G∈ΩG

PC(G)
P

∏
μ=1

δ (Fμ(G), Cμ) PC(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Σ S

δ(x, y)



Proof
Our aim is to calculate 


where


By inserting this explicit expression we obtain 

Ω = − ln
1
Z

e−∑P
μ=1 λμCμ ∑

G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ) = − ln [e−SZM] = − ln e−S+Σ = S − Σ

PC(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Ω = − ln ∑
G∈ΩG

PC(G)
P

∏
μ=1

δ (Fμ(G), Cμ)

Ω = − ln ∑
G∈ΩG

1
Z

e−∑P
μ=1 λμFμ(G)

P

∏
μ=1

δ (Fμ(G), Cμ) = − ln ∑
G∈ΩG

1
Z

e−∑P
μ=1 λμCμ

P

∏
μ=1

δ (Fμ(G), Cμ)



Entropy of micro canonical 
network ensemble

The entropy of the microcanonical ensemble 𝜮 is given by 


where 


and


Σ = S − Ω

Ω = − ln ∑
a

PC(a)
N

∏
i=1

δ ki,
N

∑
j=1

aij

PC(a) =
e−∑N

i=1 λi ∑
N
j=1 aij

Z
k̄i = ∑

a

PC(a)
N

∑
j=1

aij = ki ∀i ∈ {1,2,…, N}

K. Anand & G. Bianconi (2010)



Entropy of the  
microcanonical ensemble

 In the uncorrelated limit we have 
 

𝜴 is extensive (order N)  

 There is no equivalence of the canonical and 
microcanonical ensembles 

Σ = ln ZM = S − Ω Ω = −
N

∑
i=1

ln (
kki

i

ki!
e−ki)

Bianconi et. al (2008)  K. Anand & G. Bianconi (2010)



There is no equivalence of the 
ensembles as long as the number 

of constraints is extensive
Example  
Microcanonical esemble    Canonical ensemble 
Regular networks       Poisson networks 

         but 
      

K. Anand, G. Bianconi PRE 2009

pij =
⟨k⟩
N

pij =
⟨k⟩
N

Σ < S



Canfield-Bender formula

The asymptotic formula  
for the number of networks in  
the uncorrelated network limit  

of the configuration model  
is given by 

𝒩 = ZM ≃
(⟨k⟩N )!!

∏N
i=1 ki!

e
− 1

4 ( ⟨k2⟩
⟨k⟩ )

2



Combinatorial meaning of 
the Canfield-Bender formula

𝒩 = ZM ≃
(⟨k⟩N)!!

∏N
i=1 ki!

e
− 1

4 ( ⟨k2⟩
⟨k⟩ )

2

(⟨k⟩N)!!

N

∏
i=1

ki!

e
− 1

4 ( ⟨k2⟩
⟨k⟩ )

2

Number of possible matchings  
between the half-stubs 

Degeneracy of the counting due to  
the permutation of the  

half-stubs of each node 

Asymptotic correction for  
obtaining simple networks



Proof
Starting from


with


and


We can express 𝜮 as


Therefore we have


 

S ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

Ω = −
N

∑
i=1

ln ( 1
ki!

kki
i e−ki) = −

N

∑
i=1

ki ln ki +
N

∑
i=1

ln ki! +
N

∑
i=1

ki

Σ ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

ln k̄i! −
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

ZM = eΣ ∼
(⟨k⟩N )!!

∏N
i=1 ki!

e
− 1

4 ( ⟨k̄2⟩
⟨k̄⟩ )

2

Σ = S − Ω



The entropy of the canonical ensemble  
depends on the degree distribution 

Exponential random graphs  
with the same average degree  

but different degree distribution  
have  

different entropy



Two examples of given degree 
sequence

k=2 

k=1

k=2
k=2

Zero entropy Non-zero entropy 

k=3



Two examples of given degree 
sequence

k=2 

k=1

k=2
k=2

Zero entropy Non-zero entropy 

k=3



The entropy  
of random scale-free networks

The entropy  decreases as     
quantifying a higher order in networks with fatter tails

γ → 2

P(k) = Ck−γ



Randomization

Edge swaps randomisation 


can be shown 


to provide a 


biased sampling 


of the networks in the configuration model



Metropolis-Hastings 
algorithm

• Start from a given network of N nodes and given target degree sequence. 


• Iterate the following procedure until convergence of observables


1. Pick randomly a pair of links  


2. If allowed perform a edge swap  transition                 with probability


Where         indicates the number of viable edge swaps allowed starting from 
adjacency matrix  


Πa→a′ = min [1,
P(a′ ) |Φa |
P(a) |Φa′ | ]

a → a′ 

(i, j) (r, s)

|Φa |
a

Coolen, De Martino,Annibale, J Stat Phys (2009) 136: 1035–1067



Average number of loops of 
finite size L

In the uncorrelated network limit the number of loops of finite size L are 
given by 


• For Poisson networks we have 


therefore the number of small  loops is finite even in an infinite network


• Scale free networks the second moment diverge


therefore we  have an infinite number of small loops

⟨𝒩L⟩ =
1

2L ( ⟨k(k − 1)⟩
⟨k⟩ )

L

⟨k(k − 1)⟩ = ⟨k⟩2 = 𝒪(1)

⟨k(k − 1)⟩ = 𝒪(N(3−γ)/2)

G. Bianconi, M. Marsili JSTAT (2005)



Expected clustering 
coefficient

In the uncorrelated network limit the expected average clustering coefficient 
of a node is independent of the degree of the node and  given is given by


⟨Ci |ki⟩ =
1

3⟨k⟩N ( ⟨k(k − 1)⟩
⟨k⟩ )

2

• For Poisson networks we have 


therefore 


• For scale free networks we   have 


and we still observe  vanishing average clustering coefficient

⟨k(k − 1)⟩ = ⟨k⟩2 = 𝒪(1)

⟨Ci |ki⟩ = 𝒪(N−1)

⟨k(k − 1)⟩ = 𝒪(N(3−γ)/2)

⟨Ci |ki⟩ = 𝒪(N2−γ)



Phase transitions in  

Maximum Entropy Ensembles



2-star model
A wedge is a triple of nodes connected by two links


The 2 star model is  

the maximum entropy canonical network model  

in which we fix  

• the expected total number of links 


• the expected number of wedges

aijaiℓ = 1i

j

ℓ



The soft constraints 
of the 2 star model

2 star model 

In this case we impose the  expected total number of links 
as a soft constraint


and the expected total number of wedges as a soft 
constraint


∑
G⊂ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

N

∑
i

∑
j≠ℓ|j,ℓ≠i

aijaiℓ P(G) = C̄



Phase transition in the  
2-star model

By solving the 2 star model in the mean-field approximation  

a first order phase transition is found  

between a low density phase and  

a high density phase  

including a region of the phase-space  

with coexistence of the two phases. 



Probability of a network in 
the 2 star model

According to the general theory of canonical network ensemble 
the probability of a network can be expressed as 


with Hamiltonian given by 


where 𝜆 and 𝜸 are Lagrangian multipliers enforcing the 
constraints

P(G) =
1
Z ∑

a

exp λ∑
i<j

aij + γ
N

∑
i=1

∑
j≠ℓ,ℓ≠j

aijaiℓ =
e−H(G)

Z

H(G) = − λ∑
i<j

aij − γ∑
i

∑
j≠ℓ

aijaiℓ



Mean-field approximation 
In the mean field approximation we neglect correlations and we put


which gives


Where we assume that the marginal of each link is the same and  equal to p, 
i.e.


aijajℓ ≃ aij⟨ajℓ⟩ + ⟨aij⟩ajℓ − ⟨aij⟩⟨ajℓ⟩

⟨aijajℓ⟩ ≃ ⟨aij⟩⟨ajℓ⟩

⟨aij⟩ = p ∀i, j

v



Mean-field approximation 
By inserting the mean-field approximation


In the expression for the Hamiltonian 


We get 


aijajℓ ≃ aij p + ajℓ p − p2

H(G) = − β∑
i<j

aij − γ∑
i

∑
j≠ℓ

aijaiℓ

HMF(G) = − β∑
i<j

aij − γ∑
i

∑
ℓ≠j,ℓ≠i

[aij p + ajℓ p − p2]

= − β∑
i<j

aij − γ ∑
i, j

aij ∑
ℓ≠j,ℓ≠i

p + ∑
jℓ

ajℓ ∑
i≠j,i≠ℓ

p + C

≃ − β∑
i<j

aij − 4γpN∑
i<j

aij + C = − ∑
i<j

aij(β + 4Nγp) + C



Self-consistent equation
Assuming that p is known and that the Hamiltonian of the 
network ensemble is given by its mean-field approximation


We can calculate the marginal which leads to 


the self-consistent equation for p given by 


HMF(G) ≃ − ∑
i<j

aij(β + 4Nγp) − C

p = f(p) =
eβ+4Nγp

1 + eβ+4Nγp

v



Phase transition in the  
2-star model

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

p

f(p
)

p = f(p) =
eβ+4Nγp

1 + eβ+4Nγp

For some values of the Lagrangian multipliers  

there are two stable solutions at  

high density (high value of p) and low density (low values of p) 


and one unstable solution

v



By putting 


the phase diagram of p as a function of B is given by 


 

Phase transition in the  
2-star model

Phase transition in the  
2-star model

Phase transition in the  
2-star model

B =
β
2

J = γN

Park and Newman (2004)

v



Strauss model
A triangle is a triple of nodes connected by three links


The Strauss model is  

the maximum entropy canonical network model  

in which we fix  

• the expected total number of links 


• the expected number of triangles

aijajℓaℓi = 1i

j

ℓ



The soft constraints 
of the Strauss model

Strauss model 

In this case we impose the  expected total number of links 
as a soft constraint


and the expected total number of triangles as a soft 
constraint


∑
G⊂ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

∑
i<j<ℓ

aijaiℓajℓ P(G) = C̄



Phase transition in the 
Strauss model

By solving the Strauss model in the mean-field approximation  

a first order phase transition is found  

between a low density phase and  

a high density phase  

including a region of the phase-space with coexistence of the two phases. 

In the high density phase one observes a 


condensation phenomena 


where the network is decomposed in a high density phase including all the 
triangles and into several disconnected nodes and clusters.


