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Network Ensemble
Definition (for simple networks) 

A network  ensemble      is a triple                    where             
is any possible network                belonging to the set  of all   
simple networks with N nodes       and             with                  
is the probability associate to each graph                                                     


Generalization 

The definition can be extended to non simple networks such 
as directed, weighted networks and also to generalised 
network structures by suitably changing the definition of

𝒢 (G, ΩG, P(G)) G

ΩG

G = (E . V )

ΩG P(G) ≥ 0 ∑
G∈ΩG

P(G) = 1

G



Entropy of network 
ensembles

Definition 

The entropy of a network ensemble is given by 


It can be thought as the logarithm of the typical number of 
networks in the ensemble.


Here we have chosen the natural logarithm for simplicity

S = − ∑
G∈ΩG

P(G)ln P(G)



Constraints
 We distinguish between soft constraints and  hard constraints.


The soft constraints are the constraints satisfied in average 
over the ensemble of networks.


The hard constraints are the constraints satisfied by each 
network in the ensemble.

Fμ(G) = Cμ for μ = 1,2…, P

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Anand Bianconi 2009



Examples of hard 
constraints

• Example 1:We can fix the total number of links 


• Example 2: We can fix the entire degree sequence

L

∑
i<j

aij = L

N

∑
j=1

aij = ki for i = 1,2,…, N

P = 1
F1(G) = ∑

i<j

aij

C1 = L

P = N

Fi(G) =
N

∑
j=1

aij

Ci = ki

{
{

Fμ(G) = Cμ for μ = 1,2…, P



Examples of soft 
constraints

• Example 1:We can fix the expected total number of links 


• Example 2: We can fix the expected degree sequence

L̄

∑
G∈ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

N

∑
j=1

aij P(G) = k̄i for i = 1,2,…, N

P = 1
F1(G) = ∑

i<j

aij

C1 = L̄

P = N

Fi(G) =
N

∑
j=1

aij

Ci = k̄i

{
{

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P



Canonical and microcanical 
ensembles

• The microcanonical ensemble is the maximum entropy 
ensemble satisfying a given set of hard constraints of the 
type


• The canonical ensemble is the maximum entropy ensemble 
satisfying a given set of soft constraints of the type


 
∑

G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Fμ(G) = Cμ for μ = 1,2…, P

Anand Bianconi 2009



Conjugated ensembles
A microcanonical ensemble and a canonical ensemble 


are conjugated  

when they satisfy corresponding constraints, 


i.e. when they satisfy


with the same choice of        and     respectively.  

Fμ(G) = Cμ for μ = 1,2…, P

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Fμ(G) Cμ



Canonical network 
ensemble

Proposition 

The canonical ensemble satisfying the set of soft constraints 


is determined by a probability  given by


where     is a normalisation constant                                is called the Hamiltonian


and  the Lagrangian multipliers    are fixed by the constraints. 


For this reason the canonical network ensembles are also called exponential 
random graphs

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

P(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Z

λμ

H(G) =
P

∑
μ=1

λμFμ(G)



Log-likelihood 
Consider a network       coming from an unknown network ensemble


We assume that the unknown distribution of the ensemble is  coming from an 


ensemble with  distribution              dependent on the parameters 


Definition 

The log-likelihood of a parameters      is defined as


ℒ( ⃗λ |G) = − ln P ⃗λ (G)

G P(G)

⃗λ

P ⃗λ (G) ⃗λ



Maximum likelihood 
estimation

The maximum likelihood estimation of the parameters 


corresponding to the distribution          


that best approximate the observed network 


(according to maximum likelihood estimation) takes the form


⃗λ⋆

P ⃗λ⋆ (G)

⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |G) = argmin ⃗λ [−ln P ⃗λ (G)]



Relation between maximum 
entropy and maximum likelihood

Assuming that               is the Gibbs measures of the type


Maximum likelihood estimation of the parameters 


Implies that                is the maximum entropy ensemble with constraints fixed by the data 


⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |G)

P ⃗λ (G)

P ⃗λ (G) =
e−∑P

μ=1 λμFμ(G)

Z

⃗λ ⋆

Fμ(G) = ⟨Fμ(G)⟩ENSEMBLE = ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ )

P ⃗λ (G)



Proof
Minimising  the negative log-likelihood 


We get


Therefore


Therefore we  have 


−ℒ( ⃗λ |G) = − ln P ⃗λ (G) = ∑
μ

λμFμ(G) + ln Z

0 =
∂ℒ( ⃗λ |G)

∂λμ
= Fμ(G) +

∂ ln Z
∂λμ

for μ = 1,2…, P

Fμ(G) = −
∂ ln Z
∂λμ

= ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ ) for μ = 1,2,…, P

Fμ(G) = ⟨Fμ(G)⟩ENSEMBLE = ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ )



Random graphs



Random graphs
 

 Poisson 
distribution

G(N,p) ensemble  
Graphs with N nodes 

Each pair of nodes linked  
with probability p

G(N,L) ensemble 

 Graphs with exactly  
N nodes and 

L links

2L
N

→ ⟨k⟩

p =
2L̄

N(N − 1)
→

⟨k⟩
N − 1

Sparse regime



Constraints of random 
graphs

Microcanonical ensemble 

We can fix the total number of links 


Canonical ensemble 

We can fix the expected total number of links 

L

∑
G∈ΩG

∑
i<j

aij P(G) = L̄

L̄

∑
i<j

aij = L



Canonical ensemble 
The G(N,p) ensemble

According to the general theory of exponential random graph if 
we constraint the expected total number of links the ensemble 
is specified by the probability


where


Each graph G is specified by its adjacency matrix so we 


have 


can alternatively write  
P(a) =

1
Z

e−λ∑i<j aij

P(a) = P(G)

P(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

P = 1, F1(G) = ∑
i<j

aij, C1 = L̄ .



The G(N,p) ensemble
The probability of a network in the G(N,p) ensemble can be written as 


where


are the marginal probability of having a link. 


Since these marginal are equal for every link, i.e.


we have  


pij = p =
e−λ

1 + e−λ
=

2L̄
N(N − 1)

∀i, j

P(a) = ∏
ij

paij
ij (1 − pij)1−aij

P(a) = pL(1 − p)N(N−1)/2−L

pij = ∑
a

aijP(a)



Proof
Let us start by calculating the partition function


i.e.


Z = ∑
a

e−λ∑i<j aij = ∑
a12=0,1

∑
a1,3=0,1

… ∑
aN−1,N=0,1

∏
i<j

e−λaij

= ∑
a12=0,1

e−λa12 ∑
a1,3=0,1

e−λa13… ∑
aN−1,N=0,1

e−λaN−1,N = ∏
i<j

∑
aij=0,1

e−λaij

= ∏
i<j

(1 + e−λ) = (1 + e−λ)N(N−1)/2

Z = (1 + e−λ)N(N−1)/2



Proof
The marginal probability of a link between node (i,j) is given by 


i.e.


pij =
1
Z ∑

a

aije
−λ∑r<s ars =

1
Z ∑

a12=0,1
∑

a1,3=0,1

… ∑
aN−1,N=0,1

∏
r<s

aije−λars

=
1
Z ∑

a12=0,1

e−λa12 ∑
a1,3=0,1

e−λa13… ∑
aij=0,1

aije−λaij… ∑
aN−1,N=0,1

e−λaN−1,N

=
1
Z

e−λ ∏
r<s|(r,s)≠(i, j))

∑
ars=0,1

e−λars =
e−λ

Z (1 + e−λ)N(N−1)/2−1 =
e−λ

1 + e−λ

pij = p =
e−λ

1 + e−λ
∀i, j

Z = (1 + e−λ)N(N−1)/2

using



Proof (continuation)

L̄ = ∑
a

P(a) ∑
i<j

aij = ∑
i<j (∑

a

P(a)aij) = ∑
i<j

pij = p
N(N − 1)

2

p =
2L̄

N(N − 1)

Therefore the expected number of links is given by 


and the marginal probability can be expressed as



Proof (continuation)
`Given the distribution of the G(N,p) ensemble 


with partition function and marginal given by 


We can easily show that the distribution  factorises over contributions coming 
from single links, getting  

P(a) =
1
Z

e−λ∑i<j aij

p =
e−λ

1 + e−λ

P(a) = ∏
i<j

paij(1 − p)1−aij = pL(1 − p)N(N−1)/2−L

Z = (1 + e−λ)N(N−1)/2

ℒ(p |a) = − ∑
ij

[aij ln(p) − (1 − aij)ln(1 − p)]



Maximum likelihood 
estimation of p from data

Let us assume that a given network model is described by the G(N,p) ensemble,


The log-likelihood  of p is given by 


where L is the exact observed number of links in the data.


By maximising the log-likelihood we get 


Therefore the maximum likelihood estimation of p is 

Pp(a) = ∏
i<j

paij(1 − p)1−aij = pL(1 − p)N(N−1)/2−L

ℒ(p |a) = − ∑
ij

aij ln(p) − (1 − aij)ln(1 − p) = − L ln p − (N(N − 1)/2 − L)ln(1 − p)

∂ℒ(p |a)
∂p

= −
L
p

+ (N(N − 1)/2 − L)
1

1 − p
= 0

(N(N − 1)/2 − L)p − L(1 − p) = N(N − 1)/2p − L = 0

p =
2L

N(N − 1)



Sparse regime
In the sparse regime 


the total number of links satisfies


where the average degree is constant .


Therefore the marginal probability of a link 


can be written as


 
p =

2L̄
N(N − 1)

=
⟨k⟩

N − 1
≃

⟨k⟩
N

2L̄ = ⟨k⟩N



Degree distribution 
of the G(N,p) ensemble 

The degree distribution of the G(N,p) ensemble is given by 
the binomial distribution


That in the large network limit converges to the Poisson 
distribution

ℙ(ki = k) = ℙ
N

∑
j=1

aij = k = (N − 1
k ) ( ⟨k⟩

N )
k

(1 −
⟨k⟩
N )

N−1−k

ℙ(ki = k) =
1
k!

⟨k⟩ke−⟨k⟩



Entropy of the G(N,p) 
ensemble

The entropy of the G(N,p) ensemble


defined by the distribution


is given by 


By inserting the explicit expression of the marginal we get 

S = − ∑
a

P(a)ln P(a)

P(a) = ∏
i<j

paij(1 − p)1−aij

S = −
N(N − 1)

2 [p ln p + (1 − p)ln(1 − p)]

S = −
N(N − 1)

2 [ ⟨k⟩
N

ln ( ⟨k⟩
N ) + (1 −

⟨k⟩
N ) ln (1 −

⟨k⟩
N )]



Scaling of the entropy of 
the random graph G(N,p)

The entropy of the ensemble G(N,p) 


obeys the following scaling with the total number of nodes N


 

S =
1
2

⟨k⟩N ln⟨k⟩N − N⟨k⟩ln⟨k⟩ +
N
2

⟨k⟩ + 𝒪(1){ {
𝒪(N ln N) 𝒪(N)

The entropy is not extensive



Proof
• Starting from the expression of the entropy


• By expanding in the limit for 


• By rearranging the terms we get 

S =
1
2

⟨k⟩N ln⟨k⟩N − N⟨k⟩ln⟨k⟩ +
N
2

⟨k⟩ + 𝒪(1)

S =
N
2

⟨k⟩ln N −
N
2

⟨k⟩ln[⟨k⟩] +
N
2

⟨k⟩ + 𝒪(1)

S = −
N(N − 1)

2 [ ⟨k⟩
N

ln ( ⟨k⟩
N ) + (1 −

⟨k⟩
N ) ln (1 −

⟨k⟩
N )]

N → ∞



Microcanonical  
random graph ensemble G(N,L)

The microcanonical ensemble G(N,L) where we enforce the hard 
constraints on the total number of links is determined by the distribution


where 


indicates the total number of simple networks of N nodes and L links 


ZM = ∑
G∈ΩG

δ L, ∑
i<j

aij = (N(N − 1)/2
L )

P(G) =
1

ZM
δ L, ∑

i<j

aij



Entropy of the G(N,L) 
ensemble

The entropy of the G(N,L) ensemble 


is given by 


Σ = ln ZM = ln [(N(N − 1)/2
L )]



Equivalence of the random  
graph ensembles

The random graph ensembles G(N,p) and G(N,L) are 
asymptotically equivalent.


Indeed for          their entropies satisfy

Σ ≃ S

N ≫ 1

(left as an exercise)



Average clustering 
coefficient

The average clustering coefficient 


of the nodes of a Poisson network is given by


Therefore it is vanishing in the large network limit

⟨Ci |ki⟩ =
⟨k⟩
N



Diameter of random graphs
The diameter of the G(N,p) ensemble scales like


therefore we say that random graphs have infinite Hausdorff 
dimension


D = 𝒪(ln N )

dH = ∞



Degree sequence  

as constraint



Network ensemble 
 with given degree sequence 

Microcanonical ensemble             Canonical ensemble  

Ensemble of network with exact             Ensemble of networks given expected  
 degree sequence                         degree sequence

Configuration model                    Exponential random graph

P(G) =
1

ZM

N

∏
i=1

δ ki,
N

∑
j=1

aij
P(G) =

1
Z

e−∑N
i=1 λi ∑

N
j=1 aij



Expected degree sequence  

as constraint



Canonical ensemble or exponential 
random graph 

with given expected degree sequence

We consider the  

canonical network ensemble  

in which we impose the N soft constraints 

k̄i = ∑
G∈ΩG

P(G)
N

∑
j=1

aij i = 1,2,…, N



Canonical ensemble
Proposition 

The canonical ensemble in which  we fix the expected degree sequence has Gibbs 
measure 


Proof 

This follow directly from the general Gibbs measure of canonical network ensemble 


 


where we take as constraints


 

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

P(a) = P(G) =
e−∑N

i=1 λiFi(G)

Z

P = N, Fi(G) =
N

∑
j=1

aij, Ci = k̄i for i = 1,2…, N



Hamiltonian and  
Partition Function 

• The Hamiltonian of the canonical ensemble with given 
expected degree sequence is given by 


• The partition function is given by 

Z = ∏
i<j

(1 + e−(λi+λj))

H(G) =
N

∑
i=1

λi

N

∑
j=1

aij = ∑
i<j

(λi + λj)aij



Proof
The canonical ensemble in which  we fix the expected 
degree sequence has a Gibbs measure 


that can be equivalent expressed as 


Indeed the Hamiltonian can be written as 

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij =

e−H(G)

Z

P(a) =
1
Z

e−∑i<j aij(λi+λj)

H(G) =
N

∑
i=1

λi

N

∑
j=1

aij =
1
2 ∑

i, j=1,…,N

aijλi + ∑
i, j=1,…,N

ajiλj =
1
2 ∑

i, j=1,N

aij(λi + λj) = ∑
i<j

aij(λi + λj)



Proof (continuation)
Given the expression for the Gibbs measure


The partition function of the ensemble can be written as


Z = ∑
a

e−∑i<j aij(λi+λj) = ∏
i<j

∑
aij=0,1

e−aij(λi+λj) = ∏
i<j

(1 + e−(λi+λj))

P(a) =
1
Z

e−∑i<j aij(λi+λj)



Marginal and equation for 
the Lagrangian multipliers

In the canonical ensemble with given expected degree sequence the marginal probability 
of a link


is given by  


where    are the Lagrangian multipliers fixing the expected degrees, i.e. satisfying


pij =
e−λi−λj

1 + e−λi−λj

(i, j)

pij = ∑
a

aijP(a)

λi

k̄i = ∑
j≠i

pij = ∑
j≠i

e−λi−λj

1 + e−λi−λj



Proof
The partition function of the ensemble can be written as


The marginal probability of the link (i,j) can be calculated as 


Z = ∑
a

e−∑r<s ars(λr+λs) = ∏
r<s

∑
ars=0,1

e−ars(λr+λs) = ∏
r<s

(1 + e−(λr+λs))

pij =
1
Z ∑

a

aije
−∑r<s ars(λr+λs) =

1
Z

e−λi−λj ∏
r<s|(r,s)≠(i, j))

∑
ars=0,1

e−ars(λr+λs)

pij =
e−(λi+λj)

Z ∏
r<s|(r,s)≠(i, j))

(1 + e−(λr+λs)) =
e−λi−λj

1 + e−λi−λj



Proof (continuation)
The Lagrangian multipliers are fixed by the constraints,


i.e.


Therefore by substituting the expression of marginal in terms of the Lagrangian 
multipliers we obtain 


k̄i = ∑
a

P(a)
N

∑
j=1

aij =
N

∑
j=1 (∑

a

P(a)aij) =
N

∑
j=1

pij

k̄i =
N

∑
j=1

pij

k̄i = ∑
j≠i

e−λi−λj

1 + e−λi−λj



The  probability of a graphs 
in terms of the marginals

When the canonical network model involves only constraints 
linear on the adjacency matrix like the expected degree 
sequence than the probability of a network can be written as


In the case in which we have 


This expression follows directly from the equations


 

P(a) = ∏
i<j

paij
ij (1 − pij)1−aij

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

pij =
e−λi−λj

1 + e−λi−λj
Z = ∏

i<j
(1 + e−λi−λj)



Entropy of canonical 
ensemble

The entropy 


of the canonical ensemble with Gibbs measure


can be expressed as  

S =
N

∑
i=1

λik̄i + ln Z =
N

∑
i=1

λik̄i + ∑
i<j

(1 + e−λi−λj)

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

S = − ∑
a

P(a)ln P(a)



Entropy of canonical 
ensemble

Alternatively the  entropy 


of the canonical ensemble can be expressed as 


where we have used 

S = −
N

∑
i<j

[pij ln pij + (1 − pij)ln(1 − pij)]

P(a) = ∏
i<j

paij
ij (1 − pij)1−aij

S = − ∑
a

P(a)ln P(a)



The entropy of the canonical ensemble  
depends on the degree distribution 

Exponential random graphs  
with the same average degree  

but different degree distribution  
have  

different entropy



Log-likelihood

P(a) =
e−∑N

i=1 λi ∑
N
j=1 aij

Z

ℒ( ⃗λ |a) = − ln P ⃗λ (a) =
N

∑
i=1

λiki + ∑
i<j

ln(1 + e−λi−λj)

Given a network G our aim to to  model it  
with a canonical network model  

depending on the parameters 

The log-likelihood of the parameters is given by  

⃗λ



Log-likelihood
Given the alternative expression of the probability of a network


where the marginal probabilities are given by 


The log-likelihood can be also expressed as 


 

P(a) = ∏
i<j

paij
ij (1 − pij)1−aij

pij =
e−λi−λj

1 + e−λi−λj

ℒ( ⃗λ |a) = − ∑
i<j

[aij ln pij + (1 − aij)ln(1 − pij)]



Maximum-likelihood 
Estimation of the parameters

ℒ( ⃗λ |G) =
N

∑
i=1

λiki + ∑
i<j

ln(1 + e−λi−λj)

0 =
∂ℒ( ⃗λ |G)

∂λi
= ki +

∂
∂λi ∑

r<s

ln(1 + e−λr−λs) = ki −
N

∑
j=1

e−λi−λj

1 + e−λi−λj

ki = ⟨ki⟩ENSEMBLE =
N

∑
j=1

e−λi−λj

1 + e−λi−λj

Given the log-likelihood of the parameters 

The maximum likelihood estimation of the parameters 
gives   

or equivalently

⃗λ

⃗λ⋆



Algorithm to generate  networks 
in the canonical ensemble
• Given the sequence of expected degrees calculate the Lagrangian 

multipliers solving the equations


• For every pair of nodes (i,j) draw a link, i.e. put 


with 


  

k̄i =
N

∑
j=1

e−λi−λj

1 + e−λi−λj

pij =
e−λi−λj

1 + e−λi−λj

aij = {
1 with  probability pij

0 with  probability 1 − pij



Metropolis-Hastings 
algorithm

• Start from a given network of N nodes. Calculate the Lagrangian 
multipliers as in the previous algorithm. 


• Iterate the following procedure until convergence of observables


1. Pick randomly a pair of nodes 


2. Perform the transition                 with probability 


where     has elements

Πa→a′ = min [1,
P(a′ )
P(a) ]a → a′ 

a′ rs = {
ars if (r, s) ≠ (i, j) and (r, s) ≠ ( j, i)
1 − aij if (r, s) = (i, j) or (r, s) = ( j, i)

a′ 

(i, j)



Final remarks
In this first second of the second lesson we have covered


A. Random graphs 

B. Canonical ensembles of networks with given expected degree sequence 

In the next lesson we will introduce 


Degree Correlations and Natural cutoffs


We will discuss the microcanonical ensemble with given degree sequence


We will expand on non-equivalence of ensembles



Correlated and Uncorrelated 
networks
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Description of  

correlated and uncorrelated 
networks  

in terms of degree classes



A network has  
degree correlations 

if the probability that a random 
link is connected to a node of 

degree k 
depends on the degree k’  

of the node at  
the other end of the link

πk|k′ 



Assortative and  
disassortative networks

In assortative networks 
“hubs connect preferentially to hubs” 

In disassortative networks  
“hubs connect preferentially to  

low degree nodes”



Assortative and  
disassortative networks

Social networks  
 are generally assortative 
Protein-interaction networks  

 are disassortative. 
Technological networks  

   are generally disassortative  
 (ex. Internet). 



Measure of degree 
correlations

The most direct measure of the matrix         is the direct measure of the 
probability 


This method has some limitations


A. The network might be too sparse to have enough statistics to 
reconstruct the full matrix


B. In presence of large degree the model cannot be compared directly with 
the uncorrelated network limit. In order to have a null model usually the 
random swapping of connection is considered.

πk,k′ 



Randomization of a network 
swap of connections

➢Choose two random 
links linking four 
distinct nodes

Maslov & Sneppen 2002
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already existing 
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€ 

Direct measurement of degree 
correlations

€ 

The map of     

reveals the correlations in  
the protein interaction map  

S. Maslov and K. Sneppen Science 2002

Probability that nodes of degree k and k’ are connected by a link 

Same probability in randomised networks  

€ 

πk,k′ 

π̃k,k′ 

πk,k′ 

π̃k,k′ 



The average degree of 
neighbour nodes

The average degree of the neighbours of a node is given by


The average degree of the neighbours of nodes of degree k 
is given by


knn(i) =
1
ki

N

∑
j=1

aijkj

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k

=
1

N(k) ∑
i|ki=k

knn(i)



The average degree of 
neighbour nodes

The average degree of the neighbours of  nodes of degree k 

Comments 

• This is a more coarse grained measure for which there is better 
statistics 


• A monotonically increasing  indicates assortative correlations


• A monotonically decreasing indicates disassortative correlations


• A drawback is that in the case in which  is not monotonic we 
cannot classify the correlations. 



Average degree of the neighbour 
of a node of degree k

lo
g(

k n
n(

k)
) Assortative networks  α>0 

Uncorrelated networks α=0 

Disassortative networks α<0

€ 

log (k)

Average degree  
of a neighbour of a  
node of degree k

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k

knn(k) ∼ kα



Disassortative correlations in the  
Internet at the AS level 

€ 

Vazquez et al. PRL (2001)

€ 

The average degree of the neighbours of 

nodes of degree k 


reveals that the 

the Internet at the AS level  is 


disassortative

knn(k) = ⟨ 1
ki

N

∑
j=1

aijkj⟩
ki=k



Newman correlation 
coefficient

The Newman correlation coefficient is a global parameter 
that provides a unique number 


given by


We have a classification of the networks depending on the 
sign of r 

r =
∑k,k′ kk′ (πk,k′ − qkqk′ )

∑k k2qk − (∑k kqk)
2

r > 0  assortative network
r < 0  disassortative network

r ∈ [−1,1]



Description of  

correlated and uncorrelated 
networks  

in terms of node labels



Uncorrelated networks

Definition  

In  uncorrelated networks  
in which  each node i has expected degree       

the probability that  a random link  
connects a node i at one end to a node j at the other end 

is given by 

πij =
k̄ik̄j

(⟨k⟩N )2

k̄i



Uncorrelated networks
 Proposition 

In an uncorrelated network in which each node i has 
expected degree       the probability that a random link is 
connected to node i given that is connected to node j a 
the other end is given by  

Comments 

• The probability    only depends on the degree of node i and is 
independent of  node j 

•  The probability    can be interpreted as the probability that in 
an uncorrelated network we reach  node i by following the link of 
any random node

qi = πi|j =
k̄i

⟨k̄⟩N

k̄i

qi

qi



Proof
Given the the expression 

we want to show that in uncorrelated networks we have 
   

According to the Bayes rule we have 

The denominator reads  

Therefore we have 

πi|j =
k̄i

⟨k̄⟩N
= qi

πi|j =
πij

∑N
j′ =1 πjj′ 

= (
k̄ik̄j

(⟨k̄⟩N )2 ) ( ⟨k⟩N
k̄j ) =

k̄i

⟨k̄⟩N
= qi

πi|j =
πij

∑N
j′ =1 πjj′ 

N

∑
j′ =1

πjj′ =
N

∑
j′ =1

k̄jk̄j′ 

(⟨k̄⟩N )2
=

kj

(⟨k̄⟩N )

πij =
k̄ik̄j

(⟨k⟩N )2



Example

i

j
πij =

2
⟨k̄⟩N

3
⟨k̄⟩N

k̄i

πij =
k̄ik̄j

(⟨k̄⟩N )2

Example

3
⟨k̄⟩N

2
⟨k̄⟩N

The probability that a random link connects  
node i to node j is given by 

The probability that the link connects one end to node i is 

The probability that the link connects the other end to node j is



Marginal probability in  
uncorrelated simple networks

Proposition  
In uncorrelated simple networks the probability that  a node i is linked to a node j 

is given by 

Proof 
In an uncorrelated network the expected number of links between node I and 

node j is given by 

Since the network is by hypothesis simple

pij =
k̄ik̄j

⟨k̄⟩N

nij = 2L̄πij = (⟨k̄⟩N )
k̄ik̄j

(⟨k̄⟩N )2
=

k̄ik̄j

(⟨k̄⟩N )

pij = ⟨aij⟩ = nij =
k̄ik̄j

(⟨k̄⟩N )



Example

i

j
pij = 2

3
⟨k̄⟩N

k̄i

pij =
k̄ik̄j

(⟨k̄⟩N )
Example

3
⟨k̄⟩N

The probability that a node connects  
node i to node j is given by 

The probability that one link of node i 
 connects node i to node j is

Since node i has an expected degree 
there is a factor 2 k̄i = 2



Structural cutoff

Simple uncorrelated networks  
must necessarily have the  

structural cutoff

i.e. the expected degrees of the nodes should be smaller 
than the structural cutoff 

KS = ⟨k̄⟩N

max
i

k̄i = K ≤ KS = ⟨k̄⟩N



Proof
In uncorrelated network the probability that two nodes are connected is  

Therefore taking                                      we must necessarily have 
   

It follows that  

pij =
k̄ik̄j

⟨k̄⟩N
≤ 1∀i, j ∈ {1,2,…, N}

pij =
K2

⟨k̄⟩N
≤ 1

K ≤ KS = ⟨k̄⟩N

k̄i = k̄j = K = max
n

k̄n



The natural cutoff of  
scale-free networks 

For scale-free networks with degree distribution 

the  
natural cutoff  

(maximum degree of  a network of N nodes 
if no constraint on the maximum degree is imposed 

scales like 
€ 

€ 

K = KN ∼ N
1

γ − 1

P(k) ≃ Ck−γ



Natural and structural cutoff of scale-
free networks

For scale-free networks with degree distribution 

the  
natural cutoff is larger than the structural cutoff 

for 
 

€ 

€ 

€ 

γ ≤ 3

P(k) ≃ Ck−γ for k ≫ 1

KN ≫ Ks = ⟨k⟩N



Uncorrelated  
scale-free networks

Sparse uncorrelated networks with  
power-law exponent      must have 

a maximum degree K (cutoff)  
that scales like 

€ 

€ 

K ∼ min [N
1

γ − 1, N
1
2]

γ



Maximum entropy ensembles 

Degree sequence  

as constraint



Expected degree sequence  

as constraint



Canonical ensemble or exponential 
random graph 

with given expected degree sequence

We consider the  

canonical network ensemble  

in which we impose the N soft constraints 

k̄i = ∑
G∈ΩG

P(G)
N

∑
j=1

aij i = 1,2,…, N



Canonical ensemble
Proposition 

The canonical ensemble in which  we fix the expected degree sequence has Gibbs 
measure 


Proof 

This follow directly from the general Gibbs measure of canonical network ensemble 


 


where we take as constraints


 

P(a) =
1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

P(a) = P(G) =
e−∑N

i=1 λiFi(G)

Z

P = N, Fi(G) =
N

∑
j=1

aij, Ci = k̄i for i = 1,2…, N



Marginal and equation for 
the Lagrangian multipliers

In the canonical ensemble with given expected degree sequence the marginal probability 
of a link


is given by  


where    are the Lagrangian multipliers fixing the expected degrees, i.e. satisfying


pij =
e−λi−λj

1 + e−λi−λj

(i, j)

pij = ∑
a

aijP(a)

λi

k̄i = ∑
j≠i

pij = ∑
j≠i

e−λi−λj

1 + e−λi−λj



Natural correlations
Since the marginal probabilities


 


do not factorise in terms depending exclusively on single nodes,


the configuration model leads to 


natural correlations


which are 


disassortative

pij =
e−λi−λj

1 + e−λi−λj



Evidence of disassortative 
correlations

Squartini, et al. Randomizing  world trade I. (2011)

⟨knn(k)⟩ = ⟨ 1
ki

N

∑
j=1

kj pij⟩
ki=k

knn(k) = ⟨ 1
ki

N

∑
j=1

kjaij⟩
ki=k

World-Trade networkAverage degree of the neighbour  
of a node in the data

Expected average degree of  
the neighbour of a node in the  
canonical network ensemble



Uncorrelated limit
Only in presence of the structural cutoff


where the expected degree are bounded  


The configuration model is an uncorrelated network and the marginal 
probabilities read


pij =
k̄ik̄j

⟨k⟩N

KS = ⟨k̄⟩N

k̄i ≪ KS = ⟨k̄⟩N ∀i ∈ {1,2,…, N}



Proof
If we assume


We can express the marginals as 


Enforcing the expected degree we get


Therefore 


with Q defined as


pij =
e−λi−λj

1 + e−λi−λj
≃ e−λi−λj

k̄i =
N

∑
j=1

e−λi−λj = e−λiQ

Q =
N

∑
j=1

e−λj =
N

∑
j=1

k̄j

Q

e−λi ≪ 1

e−λi =
k̄i

Q



Proof (continuation)
The equation 


implies that


Therefore


By inserting this equation in the expression for the Lagrangian multiplier  


We get that the initial hypothesis is only satisfied for 

Q2 =
N

∑
j=1

k̄j = ⟨k̄⟩N

Q = ⟨k̄⟩N

e−λi =
k̄i

Q
=

k̄i

⟨k⟩N

e−λi ≪ 1 iff ki ≪ ⟨k̄⟩N

Q =
N

∑
j=1

e−λj =
N

∑
j=1

k̄j

Q

pij =
k̄ik̄j

⟨k⟩N
and



Entropy of the ensemble
Given that the Gibbs entropy for the canonical ensemble 
with given expected degrees factories in single links 
contributions


The entropy of the canonical ensemble 


can be written as  

P(a) = ∏
i<j

paij
ij (1 − pij)1−aij

S = − ∑
a

P(a)ln P(a)

S = −
N

∑
i<j

[pij ln pij + (1 − pij)ln(1 − pij)]



Entropy of the canonical 
ensemble

In the uncorrelated limit, when the marginal probabilities are given by 


The entropy of the canonical ensemble 


can be written as 


S = −
N

∑
i<j

k̄ik̄j

⟨k̄⟩N
ln

k̄ik̄j

⟨k̄⟩N
+ (1 −

k̄ik̄j

⟨k̄⟩N ) ln (1 −
k̄ik̄j

⟨k̄⟩N )

S = −
N

∑
i<j

[pij ln pij + (1 − pij)ln(1 − pij)]

pij =
k̄ik̄j

⟨k̄⟩N



Entropy of the canonical ensemble 
in the uncorrelated network limit

In the uncorrelated limit, the entropy of the canonical ensemble scales like


S ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2{ {

𝒪(N ln N) 𝒪(N)

Only dependent  
on the average degree

Dependent on  
the degree distribution

{

o(N)
Sublinear  

but diverging with N 
for power-law networks



Proof
In the uncorrelated limit, the entropy of the canonical ensemble is given by 


Using the expansions


with 


S = −
1
2

N

∑
i, j

k̄ik̄j

⟨k̄⟩N
ln

k̄ik̄j

⟨k̄⟩N
+ (1 −

k̄ik̄j

⟨k̄⟩N ) ln (1 −
k̄ik̄j

⟨k̄⟩N )

S =
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

ln(1 − x) ≃ − x −
1
2

x2 for x ≪ 1

(1 − x)ln(1 − x) ≃ − x +
1
2

x2 for x ≪ 1

x =
k̄ik̄j

⟨k̄⟩N



Proof
In the uncorrelated limit, the entropy of the canonical ensemble scales 
like


Using the entropy of the random graph G(N,p) we get


can be written as 


S ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) −
N

∑
i=1

k̄i ln k̄i +
1
2

⟨k̄⟩N −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

S ≃ SG(N,p=⟨k̄⟩/N) −
N

∑
i=1

k̄i ln k̄i + N⟨k̄⟩ln(⟨k̄⟩) −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2

SG(N,p=⟨k⟩/N ≃
1
2

(⟨k̄⟩N )ln(⟨k̄⟩N ) − N⟨k̄⟩ln⟨k̄⟩ +
1
2

⟨k̄⟩N



Entropy of the canonical ensemble 
in the uncorrelated network limit

In the uncorrelated network limit, the entropy of the canonical ensemble scales like


{ {
𝒪(N ln N) 𝒪(N)

Only dependent  
on the average degree

Dependent on  
the degree distribution

{

o(N)
Sublinear  

but diverging with N 
for power-law networks

S ≃ SG(N,p=⟨k̄⟩/N) −
N

∑
i=1

k̄i ln k̄i + N⟨k̄⟩ln(⟨k̄⟩) −
1
4 ( ⟨k̄2⟩

⟨k̄⟩ )
2



True degree distribution of 
node I in the uncorrelated limit

In the uncorrelated network limit 


the probability that node i has degree 


is given by a Poisson distribution 


with average given by the expected degree     of node i


ℙ(ki = k) =
k̄k

i

k!
e−k̄i

ki

k̄i


