P201

Workshop 6, Week 6

Please follow the instructions of your supervisor regarding timing of these problems.

Physics

1. Consider the ideal gas equation

$$
p V=n R T
$$

where n is the density of a gas of atoms in a volume V at temperature T, and R is a constant. Sketch the surface

$$
p=p(V, T)
$$

for constant density n. Skecth the following on the surface $p(V, T)$:
(i) curves of constant pressure p (isobars), (ii) curves of constant temperature T (isotherms), and
(iii) curves of constant volume V (isovolumes).

Math Practise

2. Solve the differential equations, and in each case show that the solution is real:
(i) $y^{\prime \prime}(x)+y(x)=0, y^{\prime}(0)=1, y(0)=0$
(ii) $y^{\prime \prime}(x)+y^{\prime}(x)+y(x)=0, y^{\prime}(0)=1, y(0)=0$
(iii) $y^{\prime \prime}(x)+2 y^{\prime}(x)+y(x)=0, y^{\prime}(0)=1, y(0)=0$
(iv) $y^{\prime \prime}(x)+3 y^{\prime}(x)+y(x)=0, y^{\prime}(0)=1, y(0)=0$
3. We study the differential equation $y^{\prime \prime}(x)+5 y^{\prime}(x)+4 y(x)=e^{2 x}$
(i) Solve the related homogeneous problem
(ii) Find a particular solution of the inhomogeous equation by susbtituting $y(x)=C e^{z x}$, and determining the values for C and z.
(iii) Find the solution of the inhomegeneous equation satisfying $y(0)=0$, $y^{\prime}(0)=0$.

Math Problems

4. Sketch the following surfaces:
(i) $f(x, y)=x$;
(ii) $f(x, y)=y$;
(iii) $f(x, y)=x y$.
5. Calculate the following partial derivatives
(i) $\frac{\partial}{\partial x} e^{-\left(x^{2}+y^{2}\right)}$
(ii) $\frac{\partial}{\partial y} \sin \left(x+x^{2} y^{3}\right)$
(iii) $\frac{\partial^{2}}{\partial x \partial y}\left(x^{2}+x y^{3}\right)$
(iv) $\frac{\partial^{2}}{\partial y \partial x}\left(x^{2}+x y^{3}\right)$
6. * Discuss and sketch the following:
