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describe 

 the interactions between the elements of large complex  

Biological, Social and Technological systems.

Complex networks



SOCIAL NETWORKS     COMMUNICATION NETWORKS   BIOLOGICAL NETWORKS 
    

Networks are everywhere



         LATTICES                 COMPLEX NETWORKS                RANDOM GRAPHS 
    

Regular networks 
Symmetric 

Scale free networks 
Small world 

With communities  
ENCODING INFORMATION 

IN THEIR STRUCTURE

Totally random 
Binomial degree 

 distribution

Complexity 
Between randomness and order



Because 

NETWORKS 

encode for the 
  

THE INFORMATION CONTENT 

 of the entire complex system 

Why networks?



Because 

NETWORKS MODELS 

are essential to do  
  

INFERENCE 

 starting from partial information about a 
network 

Why modelling networks?



Biological networks
The vast majority of biological networks 

includes  

NOISY DATA  
(false positives and false negatives) 

or simply  
  

PARTIAL INFORMATION 
(example the human protein network:  
only about 30% of interactions known) 



Interbank networks
Typically financial institutions retain 

information about their financial contracts 
confidential. 

Therefore  interbank networks can be only 
inferred from  

PARTIAL PUBLICLY AVAILABLE  DATA 

such as the banks’ balance sheet   



Social networks
In social network there is large interest in 

inferring their  

COMMUNITY STRUCTURE 

and  

PREDICTING MISSING LINKS  

  



Networks  
and 

Generalized network structures 
  

A classification



➢Simple Each link is either existent or non existent,  
the links do not have directionality 
(protein interaction map, Internet,…)   

➢Directed  The links have directionality, 
i.e., arrows 
(World-Wide-Web, social networks…) 

➢Signed The links have a sign 
(transcription factor networks, epistatic networks…)

Types of networks



➢Weighted The links are associated to a real number 
indicating their weight 

(airport networks, phone-call networks…) 

➢With features of the nodes The nodes might 
have weight or associated feature 

   (social networks, diseasome, ect..)

Types of networks



Generalized network structures

Going beyond the framework of simple networks  
  

is of fundamental importance 
  

for a variety of applications ranging from  

brain research to social and technological networks 

         MULTILAYER NETWORKS      SIMPLICIAL COMPLEXES  TEMPORAL NETWORKS              
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Introduction  

to  

 Simple Networks



Graphs and networks
Definition 

A graph is an ordered pair G = (V, E) comprising a set V of vertices 

connected by the set  E of edges.


Definition 

 A network is the graph  G = (V, E) describing the set of interactions between 

the constituents of a complex system. The vertices of a network are called 

nodes and the edges links. 


The network size N is the total number of nodes in the network N=|V|.

The total number of links L is given by L=|E|.

 



Dictionary

 Graphs & Network\\
    Vertices & Nodes\\
    Edges & Links\\
    Cycles & Loops\\
    Loops & Tadpoles\\

Graph theory and network theory use a different terminology.


In this course we will use the network theory terminology.


It might be useful to refer to this small dictionary when reading the literature.

Graph Theory 
Terminology

Network 
Theory 

Terminology

N Vertices Nodes

L Edges Links

Links 
connecting a 

node with itself
Loops Tadpoles



Examples of complex 
networks



Labelled networks

 A labelled network, of network size N, is formed by a set V of N distinguishable nodes 
indicated by a different and unique label 


and by a set of links E characterising the interactions between pairs of nodes. 

i ∈ {1,2,…, N}



Simple networks
Definition 

A simple network of N nodes is a network in which links are undirected and unweighted,

and in which there are no tadpoles. 


In other words the network is fully specified by a list of pairwise interactions of 

symmetric nature (if node i is linked to node j also node j is connected to node i).


Adjacency matrix 

A simple network is fully determined by its adjacency matrix.


The adjacency matrix       of a simple network is a            matrix of elements given by 


The adjacency matrix of a simple network is symmetric. 

a N × N

aij = {1 if i is linked to  j
0 otherwise.



Example of a simple network
1

2 3

45

This is a simple network of N=5 nodes and L=6 links with adjacency matrix

a =

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0



Number of nodes and links

The most important characteristic of a simple network are: 


• the total number of nodes N=|V|, 


• the total number of links |L|=|E| with 

L =
1
2 ∑

i,j

aij



Middle size complex 
networks

When does a  network starts to become “complex”?


Open question 

N

C.elegans 
Brain network

309

Venter minimal cell 256

Power-grids

Airport networks 
(single continent)

Zachary karate club network 34

Ecological networks datasets

∼ 102 − 103

∼ 102 − 103 (but up to105)

∼ 102 − 103



Large complex networks

Many network datasets have large network size


N

Brain network Up to 

Online Social networks Up to  

WWW

Internet Up to

109

109

105

1011



Network dataset 
repositories

For people that like to play with data 

Three of the most popular network repositories are: 


• SNAP: Stanford Network Analysis Project 


http://snap.stanford.edu/


• Network Repository 


http://networkrepository.com/


• Web of Life


http://www.web-of-life.es/



Sparse regime
Definition 

A sparse network has a total number of links L  of the same order of 
magnitude of the total number of nodes N.


Comments 

These are networks in which in average every node has a finite number of 
connections.


A sparse network model will allow to model networks with tunable number 
of nodes N and with a  average number of connections of every node 
independent of the total number of nodes N.

L = 𝒪(N)



Degree
Definition 

In a simple network the  degree     of node    is given by the total number of 

links incident to node  


The degree      of node     can be expressed in terms of the adjacency matrix as


or equivalently 


The maximum degree K of a simple network of N nodes is 

ki i
i

ki i

ki =
N

∑
j=1

aij,

ki =
N

∑
j=1

aji .

K=N-1



Example of a simple network
1

2 3

45

This is a simple network of N=5 nodes  
and L=6 links with adjacency matrix

a =

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

k1 = 1,k2 = 3,k3 = 3,k4 = 2,k5 = 3

Degrees



Degree sequence
Definition 

The degree sequence of a simple network is the ordered sequence 


of  the degrees      of all the  nodes  of the network .


Given the degree sequence of a simple network, we can define its average 
degree.


{ki}i=1,2…,N = {k1, k2, …, kN}

ki

⟨k⟩



Average degree
Definition 

The average degree of the network with degree sequence                                                         
is defined as                                                                                                                  


Proposition 

The average degree of a network is related to the number of nodes by


Proof 
Indeed using the definition of the average degree and the expression of the 
degree of a node in terms of the adjacency matrix we have 


{ki}i=1,2…,N = {k1, k2, …, kN}

⟨k⟩

⟨k⟩ =
1
N

N

∑
i=1

ki

⟨k⟩N =
N

∑
i=1

ki =
N

∑
i=1

N

∑
j=1

aij = 2L

⟨k⟩ =
2L
N



Example of a simple network
1

2 3

45

This is a simple network of N=5 nodes  
and L=6 links with adjacency matrix

a =

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

k1 = 1,k2 = 3,k3 = 3,k4 = 2,k5 = 3 {ki}i=1,…,N = {1,3,3,2,3}

Degrees Degree Sequence

Average degree, Maximum degree

⟨k⟩ =
12
5

,

K = 3



Degree distribution
Definition 
The degree distribution P(k) of a simple  network is a function defined for 

It  indicates the fraction of nodes of degree k.

It also indicates the probability that a randomly chosen node of the network has 
degree k. 


Let us indicate with  N(k) is the total number of nodes of the  network with degree k, 
i.e.


where               indicates the Kronecker delta, i.e.                                     and                 
otherwise.


The degree distribution P(k)  of simple network is given by 


k ∈ {0,1,2…, N − 1}

N(k) =
N

∑
i=1

δ(k, ki)

δ(k, ki) δ(k, ki) = 1 if ki = k δ(k, ki) = 0

P(k) =
N(k)

N
=

1
N

N

∑
i=1

δ(ki, k)



Properties of the  
degree distribution

The degree distribution   is non-negative                      ,   and normalized


Definition 

The n-moment of a degree distribution is defined as the expectation of 


and will be indicated as         . Therefore   


The average degree is the first moment of the degree distribution


N−1

∑
k=0

P(k) = 1.

P(k) ≥ 0 ∀k

⟨kn⟩ =
N−1

∑
k=0

knP(k) = 𝔼(kn)

kn

⟨kn⟩

⟨k⟩ =
N−1

∑
k=0

kP(k) =
1
N

N

∑
i=1

ki



Example of a simple network
1

2 3

45

This is a simple network of N=5 nodes  
and L=6 links with adjacency matrix

a =

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

k1 = 1,k2 = 3,k3 = 3,k4 = 2,k5 = 3 {ki}i=1,…,N = {1,3,3,2,3}

P(0) = 0, P(1) = 1/5,
P(2) = 1/5, P(3) = 3/5, P(4) = 0.

Degrees Degree Sequence

Degree distributionAverage degree, Maximum degree

⟨k⟩ =
12
5

,

K = 3



Clustering coefficient

Definition 

In a simple network the clustering coefficient       o a node i  of degree       is defined  as


Comments 
The clustering coefficient measures the density of triangles around a node 

(i.e. in the ego-centered network of node i) and is one of the most popular network measures.


Note however that low clustering coefficient does not imply that the network has only large loops 
(take for instance a square grid, which is highly clustered but does not contain any triangle)


Ci =
∑j<k aijajkaki

ki(ki − 1)/2
if ki > 1

Ci = 0 if ki ≤ 1

Ci ki



Clustering coefficient

€ 

€ 

1

2 3

45

Ci =
∑j<k aijajkaki

ki(ki − 1)/2
if ki > 1

Ci = 0 if ki ≤ 1

Definition

Clustering coefficient Ci

C1 = 0
C2 = 1/3
C3 = 2/3
C4 = 1
C5 = 2/3



Paths and shortest distance

Definitions 

A path of a network, is a sequence of nodes, such that every 
consecutive pair of nodes is connected by a link.


The path length  is equal to the number of links  traversed along the 
path, including eventual repetitions in the case of  paths that intersect 
themselves.


A shortest path between node i and node j is a path of minimum 
length.


The shortest distance      between node i and node j is the  length of 
any shortest path between node i and node j.


dij



Shortest distance
    The shortest distance or simply distance between two nodes is the minimal 

number of links than a path must traverse to go from one node to the other

1

3

4

Shortest distance (or distance) 

2

5

d1,2 = 1,d1,3 = 2,d1,4 = 3,d1,5 = 2,d3,5 = 1



Average shortest distance and 
diameter of a network

Definitions 

The  average shortest distance         of a connected network is the average of the 
shortest distances between any two distinct nodes  of the network.

Therefore, in a connected network we have


The diameter D of a connected network is the maximum of the shortest distances 
between any two nodes of the network given by


Comment

It follows that  we always have

ℓ =
1

N(N − 1)

N

∑
i=1

∑
j=1,N|j≠i

dij .

D = max
i, j≠i

dij .

ℓ

D ≥ ℓ



Subgraph
Definitions 

A subgraph H=(V',E') of a network G=(V,E) is formed by a set of nodes  

and by a set of links E' such that            with all the links in E' are incident 

only to nodes included in V’.


A loop of size L is a connected subgraph formed by L links such that every 

node has degree 2.


A clique of size c is a fully connected subgraph of the network of c nodes 

and c(c-1)/2 links

V′ ⊂ V
E′ ⊂ E



Loops of size L

A loop of size L is a connected subgraph formed by L links such  
that every node has degree 2

2 3

45

1

This network has  
➢2 loops of size 3 
➢and 1 loop of size 4



Cliques 
Clique of size c is a fully connected subgraph of 

the network of c nodes and c(c-1)/2 links

2 3

4
5

1
 This network contains  
 4 cliques of size 3 (triangles) 
 1 clique of size 4 



Network 

Universalities



 Small world networks

Watts and Strogatz (1998)

Complex networks have at the same time  
a small diameter  

like Cayley trees, Bethe lattices, and random graphs 
i.e. L scales like the logarithm of the number of nodes N or 

slower 

and significant density of small loops 
 like lattices 

which is measured typically by a large average clustering 
coefficient of the nodes

D = 𝒪(ln N) or D = o(ln N)

⟨C⟩ = 𝒪(1)



Watts and Strogatz  
small world model

There is a wide range of values 
of p in which high clustering 
coefficient coexist with small 
average distance



Power law networks

For

For

For 

€ 

€ 

P(k) = Ck−γ

Power-law networks are networks with degree distribution

γ > 3

γ ∈ (2,3]

γ ∈ (1,2]

⟨k⟩ → const for  N → ∞
⟨k2⟩ → const for  N → ∞

⟨k⟩ → const for  N → ∞
⟨k2⟩ → ∞ for  N → ∞

⟨k⟩ → ∞ for  N → ∞
⟨k2⟩ → ∞ for  N → ∞



Scale-free networks

k

 Actor networks             WWW          Internet

k
Faloutsos, Faloutsos and Faloutsos 1999Barabasi-Albert 1999

P(k) ≃ Ck−γ for k ≫ 1 with γ ∈ (2,3]
⟨k⟩ → const for  N → ∞
⟨k2⟩ → ∞ for  N → ∞



Scale-free networks

• A large variety of networks are scale-free.


• Scale-free networks are networks whose degree 
distribution          can be approximated ,for large values of 
the degree k, by a power-law, i.e. 


• with the  exponent          

P(k) ≃ Ck−γ for k ≫ 1

P(k)

γ ∈ (2,3]



What does it mean?
Poisson distribution

 Network with finite <k2>

Power-law distribution

Scale-free Network



Scale-free networks 
Technological networks  

Internet 
World-Wide Web 

Biological networks  
Metabolic networks, 

Protein-interaction networks, 
Transcription networks 

Transportation networks 
 Airport networks 

Social networks  
Collaboration networks 

Citation networks 
Facebook  

Economical networks 
Networks of shareholders  

The World Trade Web



Community structure 
most complex networks  

have a  
 mesoscale structure 

which reveal densely connected 
communities  

 From  
S. Fortunato 

RMP



Communities

A community of a network define a set of nodes  
more likely to be connected to each other than to the other 

nodes of the network 

Dolphins social network



Introduction  

to  

Maximum Entropy Principle



Ensemble
Definition 

An ensemble      is a triple                   where the outcome    
is the value of a random variable which takes on one of 
possible values                           having probabilities                                             
.                          with                 ,         and              .                    


Abbreviation 

Briefer notation will be used. For example,            maybe 
written as       or 

X (x, 𝒜X, 𝒫X) x

𝒜X = {a1, a2, …aM}

𝒫X = {p1, p2, …pM} pi ≥ 0 ∑
i∈𝒜X

P(x = ai) = 1P(x = ai) = pi

P(x = ai)
P(ai) P(x)



Joint ensemble
A joint ensemble      is an ensemble in which each outcome is an 
ordered pair         with                             ,


We call           the joint probability  of   

Marginal probability 

We can obtain the marginal probability         from the joint 
probability          by summation


Conditional probability 

The conditional probability is defined as  

XY
(x, y) x ∈ 𝒜X = {a1, a2, …aM} y ∈ 𝒜Y = {b1, b2, …bR}

P(x)

P(x, y)

P(x = ai |y = bj) =
P(x = ai, y = bj)

P(y = bj)
if P(y = bj) ≠ 0

(x, y)

P(x, y) P(x) = ∑
y∈𝒜Y

P(x, y)



Shannon information 
content of an outcome

Definition 

The Shannon information content of an outcome is defined to be 


Comment


The original definition is given in bits, i.e. the base of the logarithm is 
chosen to be         . However a popular choice is also        . The Shannon 
information content calculated in base         and the one calculated in base         
differ only by a multiplicative constant. If not explicitly stated here we take

h(x) = − logc p(x)

c = 2c = e
c = 2 c = e

c = e



The smaller is the probability of an outcome, the larger is its 
Shannon information content 

If the Shannon information content of a constant outcome is 
zero 


Shannon information 
content of an outcome

h(x) = − ln p(x) = ln
1

p(x)

p(x) = 1 then h(x) = 0



The Shannon information content of an outcome of a joint 
ensemble is given by 


In the case in which    and    are independent we have that 
the Shannon information content of (x,y) is given by the sum 
of the information content of x and y

Shannon information 
content of a joint ensemble

h(x, y) = − ln p(x, y)

h(x, y) = − ln p(x, y) = − ln[p(x)p(y)] = − h(x) − h(y)

x y



Entropy of an ensemble
Definition 

The entropy of an ensemble  is defined to be the average Shannon 
information of an outcome


where the following convention is adopted,


Therefore we can also write 


S = − ∑
x∈𝒜X

P(x)ln P(x)

0 ln 0 = 0

S = − ∑
x∈𝒜X|P(x)>0

P(x)ln P(x)



Properties of the Entropy
The entropy is non negative and is zero only for deterministic outcomes 

• Proof: Given the expression for the entropy


• If we have a non deterministic variable the


• If we have a deterministic outcome


   

S ≥ 0 with S = 0 iff P(x) = 1 for one x

P(x) ∈ (0,1)∀x therefore h(x) = − ln P(x) > 0 it follows that  S > 0

If P(x) > 0 then P(x) = 1 with h(x) = − ln P(x) = 0 it follows that S = 0

S = − ∑
x∈𝒜X|P(x)>0

P(x)ln P(x)



Properties of the Entropy
The entropy is maximised for uniform distribution 

•  If the  random variable can take M distinct values, i.e.


• then the maximum entropy  over all possible distributions is


•where                  is the uniform distribution 


   

If |𝒜X | = M

max
P(x)

S[P(x)] = S[PU(x)] = ln M

PU(x) =
1
M

PU(x)



Proof
|𝒜X | = M

ℱ = S − ν ∑
x∈𝒜X

P(x) − 1 = − ∑
x∈𝒜X

P(x)ln P(x) − ν ∑
x∈𝒜X

P(x) − 1

∑
x∈𝒜X

P(x) = 1

S = − ∑
x∈𝒜X

P(x)ln P(x)

∂ℱ
∂P(x)

= − ln P(x) − 1 − ν = 0

Let us assume that our variable can take M possible values


The entropy of any distribution        which is naturally normalised 


is given by 


In order to maximise the entropy over all normalised distributions

 consider the functional


where     is a Lagrangian multiplier.

By differentiating respect to           and putting the derivative to zero we get 

P(x)

P(x)
ν



Proof (continuation)

|𝒜X | = M

P(x) = PU(x) =
1
M S[PU(x)] = − ∑

x∈𝒜X

1
M

ln
1
M

= ln M

∂ℱ
∂P(x)

= − ln P(x) − 1 − ν = 0 ∀x ∈ 𝒜X

P(x) = e−1−ν

∑
x∈𝒜X

P(x) = e−1−νM = 1 or equivalently e−1−ν =
1
M

From the equations


                                                                      

we get 


By extremising      with respect to     we get the  normalization condition


Since we have                   the normalisation condition reads


It follows that the distribution        that maximised the entropy is uniform


                                   and that 

P(x)

∂ℱ
∂ν

= − ∑
x∈𝒜X

P(x) − 1 = 0

ℱ ν



Entropy of a Bernoulli 
variable

Given a Bernoulli variable


with distribution


the entropy is given by 


The entropy is zero for p=0 or p=1 (deterministic variable) and is maximised for 
p=1/2, i.e. 


  


 The entropy is a concave function

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

p

S

x ∈ {0,1}

P(x) = px(1 − p)1−x

S = − p ln p − (1 − p)ln(1 − p)

S = 0 for p = 0 or p = 1

S = ln M = ln 2 for p =
1
2



Entropy of a joint ensemble
Defintion 

The entropy of a joint ensemble is defined as 


with the usual convention


Uncorrelated joint ensembles 

For uncorrelated variables, i.e. if 


The entropy is given by   


therefore we have 

S = − ∑
(x,y)∈𝒜XY

P(x, y)ln P(x, y)

0 ln 0 = 0

S = − ∑
(x,y)∈𝒜XY

P(x)P(y)ln[P(x)P(y)]

S = SX + SY

P(x, y) = P(x)P(y)



Quote

Everything should be made  

as simple as possible, but not simpler 

Einstein



Maximum entropy principle

The least biased ensemble  

that satisfies a set of constraints  

if the ensemble that maximises the entropy 

(under the imposed constraints)



Maximum entropy principle

• Typically the constraints come from observations (data) or 
from previous knowledge about the ensemble.


• The maximum entropy principle is a very powerful tool to 
construct ensemble starting from partial information



Examples of Maximum 
entropy ensembles

Let us construct a maximum entropy ensemble in which we fix the 
expectations of some observables


  i.e. our constraints will be 


with                        being P constants. 

fμ(x) for μ = 1,2…, P

∑
x∈𝒜X

P(x)fμ(x) = Cμ μ = 1,2…, P

Cμ, μ = 1,2…, P



The maximum entropy ensemble satisfying these constraints is given by  the 
Gibbs measure


where        is the normalisation constant also called partition function


and            are the Lagrangian multipliers fixed by the constraints or equivalently 


Examples of Maximum 
entropy ensembles

P(x) =
e−∑P

μ=1 λμ fμ(x)

Z

Z = ∑
x∈𝒜X

e−∑P
μ=1 λμ fμ(x)

Z

λμ

−
∂ ln Z
∂λμ

= Cμ



Proof

ℱ = − ∑
x∈𝒜X

P(x)ln P(x) −
P

∑
μ=1

λμ ∑
x∈𝒜X

P(x)fμ(x) − Cμ − ν ∑
x∈𝒜X

P(x) − 1

∑
x∈𝒜X

P(x) = 1

S = − ∑
x∈𝒜X

P(x)ln P(x)

We consider the maximum entropy ensemble of distribution        

satisfying the constraints 


and the normalisation constraint


Therefore we need to maximise the entropy


Under this constraints. 

To this end we  consider the functional


where             are Lagrangian multipliers.

By differentiating respect to        and to each  Lagrangian multiplier putting 

the derivative to zero we can determine the maximum entropy ensemble distribution.

P(x)

∑
x∈𝒜X

P(x)fμ(x) = Cμ μ = 1,2…, P

{λμ}, ν
P(x)



Proof (continuation)

P(x) = e−1−νe−∑P
μ=1 λμ fμ(x)

eν+1 = Z = ∑
x∈𝒜X

e−λμ fμ(x)

These equations read


                                                                      


From the first equation we get


From the normalisation condition we get 


 

Finally              are fixed by the conditions 

Cμ = ∑
x∈𝒜X

fμ(x)P(x) =
1
Z ∑

x∈𝒜X

fμ(x)e−∑P
μ̃=1 λμ̃ fμ̃(x) = −

∂ ln Z
∂λμ

∂ℱ
∂λμ

= − ∑
x∈𝒜X

P(x)fμ(x) − Cμ = 0

∂ℱ
∂P(x)

= − ln P(x) −
P

∑
μ=1

λμ fμ(x) − 1 − ν = 0

∂ℱ
∂ν

= − ∑
x∈𝒜X

P(x) − 1 = 0

{λμ}



Entropy of the ensemble

• The entropy of this ensemble is given by 


• (left as an exercise)

S =
P

∑
μ=1

λμCμ + ln Z



Log-likelihood of an 
outcome

Consider an outcome     of a random variable with unknown distribution


We assume that the unknown distribution is  coming from a family 


of distributions            dependent on the parameters 


Definition 

The log-likelihood of a parameters      is defined as


ℒ( ⃗λ |x) = ln P ⃗λ (x)

x P(x)

⃗λ

P ⃗λ (x) ⃗λ



Likelihood of a set of data
• Consider a set of data  formed by independent outcomes of the random 

variable 


• The log-likelihood of this set of data is 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi)

x = {x1, x2, …, xN}

x



Maximum likelihood 
estimation

The maximum likelihood estimation of the parameters 


corresponding to the distribution          


that best approximate the data 


(according to maximum likelihood estimation) takes the form


⃗λ⋆

P ⃗λ⋆ (x)

⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |x) = argmax ⃗λ [
N

∑
i=1

ln P ⃗λ (xi)]



Relation between maximum 
entropy and maximum likelihood

Assuming that               is the Gibbs measures of the type


Maximum likelihood estimation of the parameters 


Implies that                is the maximum entropy ensemble with constraints fixed by the data 


⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |x)

P ⃗λ (x)

P ⃗λ (x) =
e−∑P

μ=1 λμ fμ(x)

Z

⃗λ ⋆

⟨ fμ(x)⟩DATA = ⟨ fμ(x)⟩ENSEMBLE = ∑
x∈𝒜X

P ⃗λ fμ(x)

P ⃗λ (x)



Proof
Consider a set of data  formed by independent outcomes of the random variable 


The log-likelihood of this set of data is


assuming  


We have 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi)

D = {x1, x2, …, xN}

X

P ⃗λ (x) =
e−∑P

μ=1 λμ fμ(x)

Z

ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi) = − ∑
μ

λμ

N

∑
i=1

fμ(xi) − N ln Z



Proof
Maximising the log-likelihood 


The log-likelihood of this set of data is


We get  


Therefore we  have 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi) = − ∑
μ

λμ

N

∑
i=1

fμ(xi) − N ln Z

0 =
∂ℒ( ⃗λ |x)

∂λμ
= −

N

∑
i=1

fμ(xi) − N
∂ ln Z
∂λμ

for μ = 1,2…, P

1
N

N

∑
i=1

fμ(xi) = −
∂ ln Z
∂λμ

= ∑
x∈𝒜X

P ⃗λ (x)fμ(x) for μ = 1,2,…, P

⟨ fμ(x)⟩DATA = ⟨ fμ(x)⟩ENSEMBLE = ∑
x∈𝒜X

P ⃗λ fμ(x) for μ − 1,2…, P



Final remarks
In this first lesson we have covered


A. Introduction to networks 

B. Maximum entropy principle 

In the next lesson we will introduce 


maximum entropy ensembles of networks


