(i) baseline hazard is where all \(z_i = 0 \). Here that is a female life given existing treatment at time of diagnosis

(ii)

(a) \(z_1 = \frac{1}{12} \), \(z_2 = 1 \), \(z_3 = 1 \)

\[h(t) = h_0(t) \left\{ 0.5 \times b_{12} \right. \]

\[+ 0.01 \times 1 - 0.05 \times 1 \}

\[= h_0(t) e^{0.21} \]

(b) \(S(t) = \exp \left[- \int_0^t h(s) \, ds \right] \)

\[= \exp \left[- \int_0^t h_0(s) e^{0.21} \, ds \right] \]

\[= \exp \left[- e^{0.21} \int_0^t h_0(s) \, ds \right] \]

\[= \exp \left[- \int_0^t h_0(s) \, ds \right] e^{0.21} \]
(iii) For this female life

\[h(t) = h_0(t) \exp \left(0.5 \times 0 + 0.01 \times 1 - 0.05 \times 0 \right) \]

\[= h_0(t) \exp \left(0.01 \right) \]

and

\[s(5) = 0.75 = \exp \left[- \int_0^5 h_0(s) \, ds \right] \exp \left(0.01 \right) \]

\[\therefore \exp \left[- \int_0^5 h_0(s) \, ds \right] = (0.75) \exp (-0.01) \]

And then for the male life

in part (ii)

\[s(5) = \exp \left[- \int_0^5 h_0(s) \, ds \right] \exp (0.21) \]

\[= (0.75 \exp (-0.01)) \exp (0.21) \]

\[= 0.7037 \]