RANDOM VARIABLES

A random variable is **discrete** if the set of outcomes is either finite in number or countably infinite. The random variable is **continuous** if the set of outcomes is infinitely divisible and, hence, not countable.
A listing of the values x taken by a random variable X and their associated probabilities is a **probability distribution**, $f(x)$. For a discrete random variable,

$$f(x) = \text{Prob}(X = x).$$

The **axioms of probability** require that

1. $0 \leq \text{Prob}(X = x) \leq 1$.
2. $\sum_x f(x) = 1$.

The **probability density function (pdf)**, $f(x)$, is defined so that $f(x) \geq 0$ and

1. $\text{Prob}(a \leq x \leq b) = \int_a^b f(x) \, dx \geq 0$.
2. $\int_{-\infty}^{+\infty} f(x) \, dx = 1$.
For a discrete random variable,

$$F(x) = \sum_{X \leq x} f(X) = \text{Prob}(X \leq x).$$

For a continuous random variable,

$$F(x) = \int_{-\infty}^{x} f(t) \, dt.$$
The mean, or expected value, of a random variable is

\[E[x] = \begin{cases} \sum_x xf(x) & \text{if } x \text{ is discrete,} \\ \int_x xf(x) \, dx & \text{if } x \text{ is continuous.} \end{cases} \]

If \(g(x) = a + bx \) for constants \(a \) and \(b \), then

\[E[a + bx] = a + bE[x]. \]

An important case is the expected value of a constant \(a \), which is just \(a \).
The variance of a random variable is

\[\text{Var}[x] = E[(x - \mu)^2] = \begin{cases}
\sum_x (x - \mu)^2 f(x) & \text{if } x \text{ is discrete,} \\
\int_x (x - \mu)^2 f(x) \, dx & \text{if } x \text{ is continuous.}
\end{cases} \]

Computation of the variance is simplified by using the following important result:

\[\text{Var}[x] = E[x^2] - \mu^2. \]

\[\text{Var}[a + bx] = b^2 \text{Var}[x], \]

which implies, for any constant \(a \), that

\[\text{Var}[a] = 0. \]
The general form of the normal distribution with mean μ and standard deviation σ is

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-1/2[(x-\mu)^2/\sigma^2]}.$$

This result is usually denoted $x \sim N[\mu, \sigma^2]$.

Standard normal distribution, denoted $N[0, 1]$
SOME SPECIFIC PROBABILITY DISTRIBUTIONS

If \(Z \sim \mathcal{N}(0, 1) \), then \(x = z^2 \sim \chi^2[1] \)—that is, chi-squared with one degree of freedom—denoted

\[z^2 \sim \chi^2[1]. \]

If \(x_1, \ldots, x_n \) are \(n \) independent chi-squared\([1]\) variables, then

\[\sum_{i=1}^{n} x_i \sim \chi^2[n]. \]

If \(x_1 \) and \(x_2 \) are two independent chi-squared variables with degrees of freedom parameters \(x_1 \) and \(x_2 \) respectively, then the ratio

\[F[n_1, n_2] = \frac{x_1/n_1}{x_2/n_2} \]

has the \(F \) distribution with \(n_1 \) and \(n_2 \) degrees of freedom.

CHI-SQUARED, \(t \), AND \(F \) DISTRIBUTIONS
SOME SPECIFIC PROBABILITY DISTRIBUTIONS

If z is an $N[0, 1]$ variable and x is $\chi^2[n]$ and is independent of z, then the ratio

$$t[n] = \frac{z}{\sqrt{x/n}}$$

has the t distribution with n degrees of freedom.

The t distribution has the same shape as the normal distribution but has thicker tails

If $t \sim t[n]$, then $t^2 \sim F[1, n]$.

CHI-SQUARED, t, AND F DISTRIBUTIONS
Standardization of Normal Distribution

One of the most useful applications of the preceding result is the linear transformation of a normally distributed variable. If $x \sim N[\mu, \sigma^2]$, then the distribution of

$$y = \frac{x - \mu}{\sigma}$$
The **joint density function** for two random variables X and Y denoted $f(x, y)$ is defined so that

$$\text{Prob}(a \leq x \leq b, c \leq y \leq d) = \begin{cases}
\sum_{a \leq x \leq b} \sum_{c \leq y \leq d} f(x, y) & \text{if } x \text{ and } y \text{ are discrete,} \\
\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx & \text{if } x \text{ and } y \text{ are continuous.}
\end{cases}$$
A **marginal probability density** or marginal probability distribution is defined with respect to an individual variable. To obtain the marginal distributions from the joint density, it is necessary to sum or integrate out the other variable:

\[
f_x(x) = \begin{cases}
\sum_y f(x, y) & \text{in the discrete case} \\
\int_y f(x, s) \, ds & \text{in the continuous case,}
\end{cases}
\]

and similarly for \(f_y(y) \).
Two random variables are statistically independent if and only if their joint density is the product of the marginal densities:

\[f(x, y) = f_x(x)f_y(y) \iff x \text{ and } y \text{ are independent.} \]
The means, variances, and higher moments of the variables in a joint distribution are defined with respect to the marginal distributions. For the mean of x in a discrete distribution,

$$E[x] = \sum_x xf_x(x)$$

$$= \sum_x x \left[\sum_y f(x, y) \right]$$

$$= \sum_x \sum_y xf(x, y).$$
The means of the variables in a continuous distribution are defined likewise, using integration instead of summation:

\[
E[x] = \int_x x f_x(x) \, dx \\
= \int_x \int_y x f(x, y) \, dy \, dx.
\]

Variances are computed in the same manner:

\[
\text{Var}[x] = \sum_x (x - E[x])^2 f_x(x) \\
= \sum_x \sum_y (x - E[x])^2 f(x, y).
\]
COVARIANCE AND CORRELATION

For any function $g(x, y)$,

$$E[g(x, y)] = \begin{cases} \sum_x \sum_y g(x, y)f(x, y) & \text{in the discrete case} \\ \int_x \int_y g(x, y)f(x, y) \, dy \, dx & \text{in the continuous case.} \end{cases}$$

The covariance of x and y is a special case:

$$\text{Cov}[x, y] = E[(x - \mu_x),(y - \mu_y)]$$

$$= E[xy] - \mu_x\mu_y$$

$$= \sigma_{xy}.$$
If \(x \) and \(y \) are independent, then \(f(x, y) = f_x(x)f_y(y) \) and

\[
\sigma_{xy} = \sum_x \sum_y f_x(x)f_y(y)(x - \mu_x)(y - \mu_y)
\]

\[
= \sum_x (x - \mu_x)f_x(x) \sum_y (y - \mu_y)f_y(y)
\]

\[
= E[x - \mu_x]E[y - \mu_y]
\]

\[
= 0.
\]
If x and y are independent, then $f(x, y) = f_x(x)f_y(y)$ and

$$\sigma_{xy} = \sum_x \sum_y f_x(x)f_y(y)(x - \mu_x)(y - \mu_y)$$

$$= \sum_x (x - \mu_x)f_x(x)\sum_y (y - \mu_y)f_y(y)$$

$$= E[x - \mu_x]E[y - \mu_y]$$

$$= 0.$$
The sign of the covariance will indicate the direction of covariation of \(X \) and \(Y \). Its magnitude depends on the scales of measurement, however. In view of this fact, a preferable measure is the correlation coefficient:

\[
r[x, y] = \rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y},
\]

where \(\sigma_x \) and \(\sigma_y \) are the standard deviations of \(x \) and \(y \), respectively. The correlation coefficient has the same sign as the covariance but is always between \(-1\) and \(1\) and is thus unaffected by any scaling of the variables.