Location of Synchronous Orbit.

\[F_c = F_g \]

\[m a w^2 = \frac{GMU}{a^2} \]
circular orbit

\[w^2 = \frac{2\pi}{P_{\text{orbit}}} \]

For the Synchronous Orbit

\[P_{\text{orbit}} = P_{\text{rotation}} \]

and

\[w = \frac{2\pi}{P_{\text{rotation}}} \]

Now solve for \(a \) where this is true.

\[a \left(\frac{(2\pi)^2}{P_{\text{rot}}^2} \right) = \frac{GM}{a^2} \]

\[a^3 = \frac{GM P_{\text{rot}}^2}{(2\pi)^2} \]

\[a = \left(\frac{GM P_{\text{rot}}^2}{(2\pi)^2} \right)^{1/3} \]