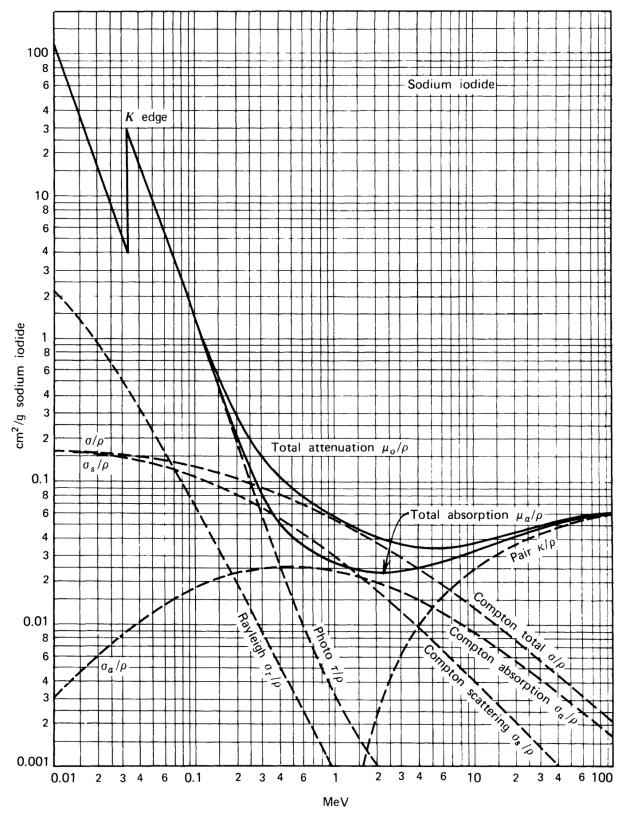
SPA 3609 Tutorial 2, Questions with outline answers for formative feedback

- 1. Estimate the ratio of the probability, per atom, of photoelectric absorption of a gamma ray in silicon to that in germanium.
 - A) Probability varies $\sim Z^5$ so $(14/32)^5 = 0.016$
- 2. Indicate which of the three major processes (photoelectric, Compton, pair-production) is *dominant* in the following interactions of gamma rays:
 - I. 1 MeV in aluminium
 - II. 100 keV in hydrogen
 - III. 100 keV in iron
 - IV. 10 MeV in carbon
 - V. 10 MeV in lead
 - A) I, II and IV: Compton, III: photoelectric, V: pair-production
- 3. Using the data in the figure (a) calculate the mean free path of 1 MeV gamma rays in NaI (ρ = 3.67 gcm⁻³) and (b) determine the probability that a 600 keV gamma ray undergoes a *photoelectric* interaction in 1 cm of NaI.



Gamma ray interactions in Nal

(a). The gamma-ray mean free path (λ) in NaI is $1/\mu$ (where μ is the total linear attenuation coefficient in NaI). The mass attenuation coefficient ($\frac{\mu}{\rho}$) is 0.06 cm²/gm at 1 MeV according to Figure 2.18, and the density of NaI relative to water (ρ) is 3.67 gm/cm³(by the definition of specific gravity). Therefore, we have $\lambda = 1/\mu = \frac{1}{\left(\frac{\mu}{\rho}\right)^* \rho}$. Here, we will denote the mass

attenuation coefficient $(\frac{\mu}{\rho})$ by μ_{ρ} , so we have

$$\lambda = \frac{1}{(\mu_{\rho} \, \rho)}$$

We substitute $\mu_p = \frac{0.06 \, \mathrm{cm}^2}{\mathrm{g}}$ and $\rho = \frac{3.67 \, \mathrm{g}}{\mathrm{cm}^3}$ to get the mean free path of 1 MeV gamma-rays in NaI (in cm).

 $\lambda = 4.54 \, \mathrm{cm}$

(b). Any photon which emerges from 1 cm cannot have undergone a photoelectric absorption. Neglecting buildup factors, the probability that a photon emerges from the slab without having an interaction is $e^{-\mu_T x}$, where μ_T is the **total** attenuation coefficient. The complement of this is the probability that a photon doesn't emerge from the slab without having had at least one interaction $(1-e^{-\mu_T x})$. The probability that the interaction is a photoelectric interaction is τ/μ_T (this is not the probability per unit path length, but the total probability that any given interaction is a photoelectric interaction). Therefore, the probability that a photon undergoes photoelectric absorption in the slab is $(\tau/\mu_T)^*(1-e^{-\mu_T x})$. This equation is expressed below, along with the values for μ_T (which is just 1 divided by the previous result for λ), the attenuation distance (denoted "x" and which is 1 cm), and τ , which is just the mass attenuation coefficient for photoelectric absorption (found on Figure 2.18 to be 0.01) multiplied by the density of NaI (3.67 g/cm3).

Probability of photoelectric absorption =
$$\frac{\tau (1 - e^{-\mu_{\tau} x})}{\mu}$$

We substitute $\mu_{\tau} = \frac{1}{4.54 \, \mathrm{cm}}$, $x = 1 \, \mathrm{cm}$ and $\tau = \frac{0.01 \times 3.67}{\mathrm{cm}}$ to get the probability of photoelectric absorption for 600 keV gamma-rays in 1 cm NaI.

Probability of photoelectric absorption = 0.0329

What is interesting is that a different result is obtained using a different, although seemingly equally valid approach. We can note that the probability per unit path length of a photoelectric interaction is τ , so $1 - e^{-\tau x}$ is the probability of a photoelectric interaction in traveling a distance x.

Probability of a photoelectric interaction = $1 - e^{-\tau x}$

We substitute x=1cm and $\tau=\frac{0.010\times3.67}{cm}$ to get the probability of a photoelectric interaction in traveling a distance x.

Probability of a photoelectric interaction = 0.0360

This result is slightly (10%) larger from the previous answer because this approach does not account for the attenuation of photons through the material by other means.

4. A cylindrical proportional tube has a 60 µm diameter anode wire and a 4 cm diameter cathode. Assuming that it is operated at a potential difference of 2 kV and that a minimum electric field of 1 MV/m is needed for gas multiplication determine what fraction of the volume of the counter provides gas multiplication.

[You will need to remind yourself/look up the expression for the electric field from a cylindrical co-axial geometry, please note that in an examination I would *not* expect you to memorise or derive such an equation]

For a cylindrical wire, the electric field is given by $E(r) = \frac{V}{r \ln(b/a)}$. In this problem, we want to know what fraction of the tube has a field larger than a given value. Find the r for this electric field strength, then the fraction is just the ratio of the radii (r and b) squared. First, we solve for "r" in the above equation.

$$E = \frac{V}{r \ln\left(\frac{b}{a}\right)}$$

The equation for r:

$$r = \frac{V}{E \ln\left(\frac{b}{a}\right)}$$

Now we take the ratio of r^2 and b^2 , substituting the known values V=2000Volts, a=0.003 cm, b=2cm and V= $\frac{10^6 \text{ Volts}}{\text{meter}}$ to get the percentage of the tube volume corresponding to the multiplication region.

$$\frac{r^2}{b^2} = 0.0237 \%$$

This is a negligibly small fraction of the tube volume, which is a characteristic of the proportional tube.