

Objectives

- · Cohort studies
 - Prospective and historical
 - Strengths and weaknesses
- Measuring risk
 - Absolute risk, relative risk
 - Attributable risk, population attributable fraction
- Causality
 - Criteria for causal inference
 - Using genetic epidemiology

Conducting a cohort study: five steps

- · Select cohort population
- · Measure exposure
- Follow-up
- Measure disease outcome
- · Estimate disease risk associated with exposure

Selection of exposed and non-exposed groups

- · Common exposures eg smoking, diet - General population cohort
- Internal comparisons of exposure status
- Rare exposures
 - Cohort defined by geography, environmental exposure/disaster
 - Montserrat volcano
 - Cohort defined by occupation eg asbestos workers
 - Internal comparison (other workers in same industry)
 - External comparison (workers in different industry)

Measuring exposure to risk factors

- Records

 - Hospital eg birth weightOccupational eg dust exposure
- Environmental monitoring - dust mite, NO₂ levels in air
- · Lifestyle questionnaire - smoking, diet, occupation
- Clinical/biochemical/molecular measurement - Body Mass Index, nutrient biomarker, genotype

Follow-up

- A challenge!
 - Chronic diseases have long latent period
- Optimising follow-up
 - stable population eg Isle of Wight, Framingham
 - motivated population eg health personnel
 - regular contact and tracing
 - important to minimise BIAS

Measuring outcome

- Records
 - Mortality
 - Death certificates
 - morbidity
 - Health care records
- Interview / examination
 - questionnaire (standardised / validated)
 - chronic bronchitis
 - asthma
 - clinical/biochemical
 - lung function, blood pressure, blood sugar

Categorising exposure for analysis

- "Natural" categorical variable
 - Smoker
 - Yes/No
 - Never/Ex/Current
- Categorical variable from continuous variable
 body mass index
 - <20; 20-24.99; 25-29.99; ≥30
 - Quantiles
- More than two categories is more informative
 - "Dose-response"

Defining outcome for analysis

- Binary outcome: Yes/No
 - Death; asthma
 - Analyse risk
- Continuous outcomes eg lung function, bp
 - Define "disease" (Yes/No) using cut-off
 - Eg COPD: FEV₁/FVC<70%
 - Analyse risk
 - Keep continuous outcome
 - Analyse difference in mean outcome between exposure groups

Comparing disease risk in exposed and non-exposed (1)

- Count number of new cases of disease in each exposure group
- Risk (incidence) of disease
 - <u>number of new cases during defined period</u>
 total number at risk at start of period
- Relative risk (risk ratio) = <u>risk in exposed</u> risk in non-exposed

Calculating the relative risk				
Develop disease Yes No Total				
Exposed Yes	а	b	a+b	
Νο	С	d	c+d	
	Relative risk	c = <u>a/(a+b)</u> c/(c+d)		

Obesity and adult-onset asthma

- Nurses Health Study, USA
- 85, 911 participants aged 26-46 in 1991
- Body Mass index measured at baseline
- Followed up for 4 years
- Outcome measure: incident asthma

Arch Intern Med 1999; 159: 2582-8

Obesity and adult-onset asthma					
Develop asthma Yes No Total					
Obese					
Yes (BMI ≥30) No	398 1,198	10,805 73,510	11,203 74,708		
Relative risk = <u>398/11,203</u> = 2.22 (1.98 - 2.48) 1,198/74,708					

Obesity	and adult-onset asthma
BMI	Adjusted RR (95% CI)
< 20	0.9 (0.7 - 1.1)
20-22.4	1.00
22.5-24.9	1.1 (1.0 - 1.3)
25.0-27.4	1.6 (1.3 - 1.9)
27.5-29.9	1.7 (1.4 - 2.0)
>30	2.7 (2.3 - 3.1)

Paracetamol and adult-onset asthma: Nurses Health Study				
Frequency				
of use (days				
per month)	Adjuste	d RR (95% CI)		
None	1.0			
1-4	1.27	(0.96 to 1.66)		
5-14	1.43	(0.99 to 2.07)		
15-21	1.78	(1.04 to 3.04)		
22+	1.53	(0.95 to 2.46)		
		P trend = 0.006		

Leisure time physical activity and risk of death

- Copenhagen City Heart Study, Denmark
- 7,023 men and women aged 20-79
- Physical activity measured in 1976-8 and 1981-3
- 1424 men and 1301 women died during 17-year follow-up

AJE 2003; 158: 639-44

Physical activity and mortality risk Level of activity at 2nd exam in those who had low Men Women activity at first exam RR* (95% CI) RR* (95% CI) Low 1.00 1.00

Moderate/high 0.64 (0.50, 0.81) 0.74 (0.58, 0.95)

*Adjusted relative risk

Comparing disease risk in exposed and non-exposed (2)

- Rate
 - number of new cases during defined period
 total "person time at risk" during period
- **Relative rate** (rate ratio) = <u>rate in exposed</u> rate in non-exposed

Nut consumption and CHD

- Nurses Health Study, USA
- 1980-1994
 1,132, 229 person years of follow-up
 Dietary questionnaire at baseline
- nut consumption
- 1255 new cases of coronary heart disease

Hu et al, BMJ 1998; 317: 1341-45

Nut consumption and CHD					
Freq of eating nuts	Cases	Person years	RR* (95% CI)		
Never <2x/week	542 584	391,918 579,805	1.0 0.91 (0.81,1.03)		
2-4x/week ≥5x/week	85 44	102,175 58,330	0.78 (0.61,0.99) 0.66 (0.47,0.93)		
*adjusted Relative Rate			P trend 0.005		

Prospective cohort studies

- Strengths
 - study rare exposure
 - study multiple effects of one exposure
 - demonstrate temporality
 - minimise bias in exposure measurement
 - measure incidence
- Limitations
 - inefficient for rare diseases
 - costly and time-consuming
 - potential bias from losses to follow-up

Historical cohort studies

- How do they differ from prospective cohort studies?
 - Outcome of interest has already occurred when study begins, therefore efficient for diseases with long latent periods
- · How do they differ from case control studies?
 - Individuals selected according to documented exposure status (historical records)

Mean FEV ₁ (I), adj. for age and height, among D'shire men and women aged 67-74 (n=618)					
	Mean	FEV ₁			
	Pneumo	nia <2yrs	Diff in	FEV ₁ (95% CI)	
	No	Yes			
Men	2.35	1.69	-0.65	(-1.02, -0.29)	
(n)	(315)	(13)			
14/2	4 70	4.50	0.40		
vvomen	1.70	1.52	-0.19	(-0.51, +0.14)	
(n)	(279)	(7)			
Am J Respir Crit Care Med 1995; 151:1649-52					

_				
_				
_				

Mean FEV ₁ (I), adjusted for age and height,
among Herts men aged 59-67 (n=639)

	Infant bronchitis/pneumonia		
Birth wt (lbs)	Absent	Present	
≤5.5	2.39 (22)	1.81 (4)	
-6.5	2.40 (70)	2.23 (10)	
-7.5	2.47 (163)	2.38 (25)	
-8.5	2.53 (179)	2.33 (12)	
-9.5	2.54 (103)	2.36 (5)	
>9.5	2.57 (43)	2.36 (3)	
	BMJ	1991; 303:671-5	

Why is it potentially misleading just to report the relative risk or odds ratio?

- The RR or OR only tells us about the aetiological, not public health, importance of an exposure
- The RR or OR alone may lead to "hype" by the media and unnecessary alarm for the public

How important are findings for Public Health?

- How many excess cases among exposed can be attributed to exposure?
 - Attributable risk
- What proportion of disease in the population can be attributed to exposure?
 - Population Attributable Fraction
- Gives an idea of scope for prevention if exposure removed (assuming causal relation)

Nurses' Health Study: Risk of primary PE by postmenopausal hormone use (1)				
	Cases	Person-years	RR* (95% CI)	
HRT us	е			
Never	27	320,339	1.0	
Current	22	155,669	2.1 (1.2 to 3.8)	
* adjusted re	elative rate	(Grodst	ein et al. Lancet 1996)	

Nurses' Health Study: Risk of primary PE by postmenopausal hormone use (2)				
HRT use	Cases	Person-years	Absolute rate	
Never Current	27 22	320,339 155,669	8 /100,000 /yr 14 /100,000 /yr	
Attribut	able Risk	= risk in exposed - = 6 cases /100,0	risk in non-exposed 000 women /year	

The importance of reporting absolute and attributable risks

- Puts research findings (RRs and ORs) into perspective
 - For policy makers

 - Do we need to do anything about this risk factor?
 "all policy decisions should be based on absolute measures of risk; relative risk is strictly for researchers only" (Geoffrey Rose, 1991)
 - For the public
 - · Should we be worried about this risk factor?
- Enables fuller interpretation and better communication of risk

Does asthma begin in utero?

- Early presentation
- Prenatal risk factors
 - Maternal smoking in pregnancy
 - Antibiotic use in pregnancy
 - Infections in pregnancy
 - Complications of pregnancy
 - Mode of delivery
 - Gestational age at birth
 - Anthropometry at birth

Avon Longitudinal Study of Parents and Children (ALSPAC)

- Prospective study of 14,541 pregnancies
 14,062 live births
 - 13,988 survived to 1 year
- Eligible
 - EDD 1.4.91 31.12.92
 - resident in Bristol health districts
- Enrolled
 - as early as possible in pregnancy
 - 85-90% of those eligible

Data collected

- · Maternal and child questionnaires
 - Prenatal nutrition
 - Biomarkers
 - FFQ in late pregnancy
 - Other prenatal/childhood exposures/confounders
- DNA on 10,000 mothers and 10,000 children
- · Respiratory and atopic phenotypes
 - Early childhood wheezing phenotypes
 - Asthma, wheezing and atopic disease at 6 years
 - Skin test reactivity and total IgE at 7 years
 - Lung function and BR (methacholine) at 8-9 years

Paracetamol use in late pregnancy and prevalence of wheezing at 30-42 months				
Frequency	n	%		
Never Some days Most days/daily	608/5134 561/3725 26/88	11.8 15.1 29.5		

Paracetamol use in late pregnancy and risk of wheezing at 30-42 months <i>(Thorax 2002; 57: 958-63)</i>				
Frequency	OR (95% CI)	Adj OR (95% CI)		
Never	1.00	1.00		
Some days	1.34 (1.18, 1.52)	1.12 (0.98, 1.28)		
Most days/daily	3.17 (1.99, 5.05)	2.10 (1.30, 3.41)*		
*P=0.003				

Paracetamol in pregnancy and childhood wheezing: Interpretation

MIRROR (LONDON, UK) 30th October 2002 PREGNANT MUMS USING PAINKILLERS DOUBLE RISK OF ASTHMA IN BABIES DOC WARNS OF LINK

• BUT

- Population Attributable Fraction = $\sim 1\%$

Causal inference in observational studies

- · Bradford Hill "criteria"
 - Size of effect
 - Dose response
 - Consistency
 - Biological plausibility
 - Temporality

Strengthening causal inference

- · Gene by environment interaction
 - Modification of paracetamol effect by gene variants influencing toxicity:
 bio plausibility

 nb human data lacking
- Glutathione-S-transferase
 - GSTT1, GSTM1, GSTP1
 - conjugates NAPQI with GSH
- Nrf2
 - Knockout mice sensitive to paracetamol toxicity
 - Disruption of Nrf2 leads to increased allergic inflammation in a mouse model of asthma

Paracetamol use in early pregnancy and asthma risk stratified by maternal Nrf2				
	Adj OR*	95% CI	Р	
C:C (n=3754)	0.99	0.81 to 1.21	0.91	
T:C/T:T (n=1137) 1.73	1.22 to 2.45	0.002	
*Per category of exposition with child	<i>ure</i> d Nrf2 genotype	Interaction	0.02	

Risk of impaired lung function by maternal smoking and GSTM1				
Overall: -0.043* (-0	0.069 to -0.016); P trend 0.0017			
Child genotype GSTM1 present: GSTM1 null:	-0.017 (-0.06 to 0.027) -0.061 (-0.10 to -0.02)			
Maternal genotype				
GSTM1 present:	-0.019 (-0.07 to 0.033)			
GSTM1 null:	-0.054 (-0.10 to -0.005)			
*Age/height-adjusted deficit (95% CI) in FEF ₂₅₋₇₅ (SDs) associated with smoking (per category increase)				

Quiz!

Which study design would be optimal in order to study the following?:

Case-control

Cohort

Rare disease Rare exposure Multiple exposures Multiple outcomes Natural history of disease Disease rate

Quiz answers					
Which study design would be optimal in order to study the following?:					
	Case-control	Cohort			
Rare disease	✓	х			
Rare exposure	х	✓			
Multiple exposures	✓	(*)			
Multiple outcomes	х	✓			
Natural history of disease	e x	✓			
Disease rate	х	✓			

Bored to death.....? IJE 2010

- Follow-up of Whitehall civil servants
 - Higher cardiovascular mortality in those reporting 'a great deal' of boredom at baseline compared with those who were 'not bored at all'

Essential reading Week 7

- · Relevant to this lecture (cohort studies)
- Barker D, Cooper C, Rose G. Epidemiology in medical practice. Chapter 5.
- Doll R, Peto R. BMJ 1976; 2: 1525-36.
- (Doll R. Am J Respir Crit Care Med 2000; 162: 4-6.)
- **NB** Please read the above and the Introduction to the tutorial **BEFORE** the seminar.