How do we study the causes of disease?

Seif Shaheen

Professor of Respiratory Epidemiology Centre for Health Sciences
Barts and The London School of
Medicine and Dentistry
s.shaheen@qmul.ac.uk

at Batsand The london

Objectives

- Descriptive studies
- Clues from geography
- Ecological studies
- strengths and weaknesses
- Case-control studies
- strengths and weaknesses
- Measurement of risk
- Odds ratio
- Confounding and bias

What is epidemiology and why do it?

- The study of the distribution of disease in populations and factors determining the distribution.

- Find causes \rightarrow Prevent disease \rightarrow Improve PH
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Epidemiology on a budget....

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prevalence of MS within the USA \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ecological studies

- Look at correlations between exposure and outcome \qquad
- Geographical (within or between countries)
- Over time \qquad
- Collect published data/routine statistics on: \qquad
- Risk factors eg national food consumption data
- Disease eg mortality rates, published survey data

Compare characteristics of populations (not individuals)

Relation between fenoterol sales and asthma mortality over time
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Ecological studies

\qquad

- Strengths
- quick and cheap to do
- generate new hypotheses / identify new
\qquad risk factors
\qquad
- maximise variation in exposure
- Limitations
- associations apply to aggregates of people but may not apply to individuals
- difficult to allow for confounding
\qquad
\qquad
\qquad
\qquad

Confounding

Risk factor \longrightarrow Disease
$\varliminf_{\text {Confounding variable }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Case-control studies

- Hard to do well, easy to do badly \qquad
".... many studies have been conducted by \qquad would-be investigators who lack even a rudimentary appreciation of epidemiological principles.......often the results are wrong because basic research principles have been violated".

Kenneth Rothman

Conducting a case-control study:

five steps

- Define study population (source of cases/controls)
- Define and select cases
- Define and select controls \qquad
- Measure exposure \qquad
- Estimate disease risk associated with exposure
\qquad
\qquad

Source of cases

- Hospital based
- Cases from selected hospital(s) over defined period
- Easier, cheaper; more severe disease
- Population (community) based
- All cases (defined period/area) or random sample
- Avoids selection factors influencing referral to hospital; less severe disease

Type and definition of cases

- Incident cases preferred to prevalent cases \qquad
- Exposures (eg lifestyle habits) may change as a result of early disease
- Case definition
- strict diagnostic criteria for presence of disease
- Standardised / validated
- Homogeneous
- Nb Different phenotypes have different aetiology

Finding cases

- Ascertainment
- Death certificates
- Disease registers; medical records
- Population survey
- If rare disease may have to find from large area / over many years
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sources of controls

- Hospital
- Different diseases from cases
- Pros
- Same selection factors as hospital cases
- Similar motivation/recall as cases
- General population
- Healthy or with other diseases
- If cases from general population
- May use as well as hospital controls
- Cons
- Lower motivation/poorer recall/response rates

Defining and selecting controls

- Control definition \qquad
- strict criteria for absence of disease of interest
- Selection of controls (sample of all controls)
- must represent the population from which the cases came

Could have been included as cases if had developed the disease of interest

- Ratio of controls:cases
- Usually 1:1
- If cases limited can go up to 4:1 to increase power

Measuring exposure

- Exposure information \qquad
- Records
- Questionnaire \qquad
- Recall risk factors / exposures in the past
- Blood measurements
- Must be collected in a comparable way for cases and controls
\qquad
\qquad
\qquad
\qquad

Comparing odds of exposure in cases and controls

- Odds of exposure
= number of individuals exposed number of individuals not exposed
- Odds ratio $=$ odds of exposure in cases odds of exposure in controls

Calculating the odds ratio \qquad

Disease outcome \qquad
Present Absent
Risk Present a b
factor
Absent
C d

Odds ratio $=\frac{a / c}{b / d}=\frac{a d}{b c}$ \qquad
b/d bc

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to deal with confounding

- Matching

- Eg match cases and controls for age, sex
- Disadvantage: can't assess effects of these factors
- Stratification
- Eg if effects seen in non-smokers, smoking can't confound
- Multivariate analysis
- Multiple logistic regression

Leukaemia near nuclear plants

- La Hague: nuclear waste reprocessing plant
- 1978-1993: 27 cases of leukaemia < 25 yrs old
- 192 controls (up to 10 per case)
- recruited from GP's
- matched for sex, age, place of birth, place of residence
- Parents interviewed about risk factor exposure

BMJ 1997; 314: 101-6 \qquad
\qquad

Leukaemia near nuclear plants

Leukaemia
Cases Controls OR (95\% CI)
Rec activity on
local beaches
< once/month
10
110
1.0
\geq once/month
17
82
2.9 (1.1-8.7)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cellular phones and brain cancer

- 5 US hospitals \qquad
- 1994-1998
- 469 cases of primary brain cancer
- 422 controls without brain cancer
- hospital patients with other diseases
- Interview (questionnaire)
- use of cellular phones

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cellular phones and brain cancer
\qquad
Cases Controls

Cell phone use (years)	$\mathrm{n}(\%)$	$\mathrm{n}(\%)$	$\mathrm{OR}^{*}(95 \% \mathrm{CI})$	
0	$403(86)$	$346(82)$	1.0	
1	$21(5)$	$30(7)$	$0.7(0.4-1.3)$	
$2-3$	$28(6)$	$24(6)$	$1.1(0.6-2.0)$	
$4+$	$17(4)$	$22(5)$	$0.7(0.4-1.4)$	

*adjusted for confounders

Selenium intake and asthma
Am J Respir Crit Care Med 2001; 164: 1823-28.

Intake/day	OR^{*}	$(95 \% \mathrm{Cl})$
1	1.0	
2	0.95	$(0.66$ to 1.36$)$
3	0.69	$(0.46$ to 1.03$)$
4	0.53	$(0.34$ to 0.81$)$
5	0.56	$(0.35$ to 0.89$)$
*adjusted odds ratio		p trend 0.0015

Paracetamol use and asthma
Thorax 2000; 55: 266-70.

Cases Controls

Freq.	$\mathrm{n}(\%)$	$\mathrm{n}(\%)$	Adj OR (95\% CI)	
never	$98(15)$	$153(17)$	1.00	
<monthly	$259(39)$	$424(47)$	1.06	$(0.77-1.45)$
monthly	$172(26)$	$219(24)$	1.22	$(0.87-1.72)$
weekly	$105(16)$	$97(11)$	1.79	$(1.21-2.65)$
daily	$30(5)$	$17(2)$	$2.38 \quad(1.22-4.64)$	
				p trend 0.0002

Relation of paracetamol use to asthma across GA²LEN centres
\qquad

Odds ratio comparing weekly versus <weekly use
Eur Respir J 2008 ; 32: 1231-1236.

Nested case control studies

- "Nested" within a cohort study \qquad
- Example: prospective cohort study
- Does low blood selenium predict \uparrow risk of lung cancer?
- Blood samples taken at baseline and frozen \qquad
- Follow-up and collection of mortality data
- At end of study define cases and controls
- Measure selenium in stored samples of cases and sample of controls only
- More efficient for costly exposure measurements

Multiple sclerosis and vitamin D status in military personnel
JAMA 2006; 296: 2832-8

Error bars indicate 95% confidence intervals.

Case control studies

- Strengths
- quicker and cheaper than cohort studies
- study rare diseases
- study multiple risk factors
- study diseases with long latent period \qquad
- Limitations
- prone to selection and recall bias \qquad
- inefficient for rare exposures
- may be difficult to establish temporality \qquad
\qquad

Reverse causation?

\qquad
\qquad

Low blood antioxidants \rightarrow Lung cancer?
or

Lung cancer \rightarrow Low blood antioxidants?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation of observational study findings \qquad

- Are the statistical findings valid? \qquad
- Chance?
- What is level of statistical significance (P value)? \qquad
-Bias?
- Confounding?
- Was this adequately addressed in design and analysis?
\qquad
\qquad
- Are the findings generalisable?
- Is the association likely to be causal?
- How important are the findings for Public Health?

Selection bias

- Can occur if selection of cases or controls is related to exposure of interest
- eg study of smoking \& lung cancer; controls with COPD
- Can occur if poor/differential response rates
- Association between exposure and outcome may be different in those in the study vs those not included

Information bias: exposure data

- Reporting by cases and controls \qquad
- Unreliable if exposure a long time ago
- Differential (recall bias) \qquad
- Interviewing by observers
- Probe more if aware of case-control status (and hypothesis)
- Minimise bias in exposure measurement by
- Blinding of researchers to case control status
- Blinding of participants to hypothesis

Importance of the prenatal environment

"The only clever thing I did was to remember that life begins at conception, not at birth...."

Alice Stewart

Prenatal X-rays and childhood malignancies BMJ 1958; 1: 1495-1508 Cases	Controls
X-rays Yes 141	81
No 1125	1204
OR $=\frac{141 / 1125}{81 / 1204}=\frac{0.125}{0.067}$	$=1.86$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Smoking and lung cancer BMJ 1950; 739-48		
Lung cancer (males)		
	Cases	Controls
Smokers	647	622
Non-smokers	2	27
$\mathrm{OR}=\underline{647 / 2}=14.0$		
622/27		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cholera outbreak in Nigeria J Water and Health 2003			
		ases	Controls
Drunk water from street vendors:	Yes	55	18
		44	55
$\mathrm{OR}=\frac{55 / 44}{18 / 55}$	$=\frac{1.2}{0.3}$	$=$	$(1.9-7.9)$

Essential reading Week 6

- Relevant to this lecture (case control studies) although we won't discuss until Week 7 seminar (Week 6 seminar relates to your assignment).
- Barker D, Cooper C, Rose G. Epidemiology in medical practice. Chapter 5.
- Fleming PJ et al. BMJ 1996; 313: 191-5.
- NB Please read this paper and the Introduction to the tutorial BEFORE the seminar in week 7.

