

Objectives

- Descriptive studies
 Clues from geography
- Ecological studies

 strengths and weaknesses
- Case-control studies – strengths and weaknesses
- Measurement of risk
 Odds ratio
- Confounding and bias

What is epidemiology and why do it? • The study of the distribution of disease in populations and factors determining the distribution.

• Find causes \rightarrow Prevent disease \rightarrow Improve PH

Ecological studies

- Look at correlations between exposure and outcome
 - Geographical (within or between countries)
 - Over time
- Collect published data/routine statistics on:
 - Risk factors eg national food consumption data
 Disease eg mortality rates, published survey
 - data
- Compare characteristics of *populations* (not individuals)

Ecological studies

- Strengths
 - quick and cheap to do
 - generate new hypotheses / identify new risk factors
 - maximise variation in exposure
- Limitations
 - associations apply to aggregates of people but may not apply to individuals
 - difficult to allow for confounding

Case-control studies

· Hard to do well, easy to do badly

".... many studies have been conducted by would-be investigators who lack even a rudimentary appreciation of epidemiological principles......often the results are wrong because basic research principles have been violated".

Kenneth Rothman

Conducting a case-control study: five steps

- Define study population (source of cases/controls)
- · Define and select cases
- Define and select controls
- · Measure exposure
- Estimate disease risk associated with exposure

Source of cases

· Hospital based

- Cases from selected hospital(s) over defined period
 - Easier, cheaper; more severe disease
- · Population (community) based
 - All cases (defined period/area) or random sample
 - Avoids selection factors influencing referral to hospital; less severe disease

Type and definition of cases

- Incident cases preferred to prevalent cases

 Exposures (eg lifestyle habits) may change as a result of early disease
- Case definition
 - strict diagnostic criteria for presence of disease
 Standardised / validated
 - Homogeneous
 - Nb Different phenotypes have different aetiology

Finding cases

- Ascertainment
 - Death certificates
 - Disease registers; medical records
 - Population survey
- If rare disease may have to find from large area / over many years

Sources of controls

- · Hospital
 - Different diseases from cases
 - Pros
 - · Same selection factors as hospital cases
 - Similar motivation/recall as cases
- General population
 - Healthy or with other diseases
 - If cases from general population
 - May use as well as hospital controls

- Cons

Lower motivation/poorer recall/response rates

Defining and selecting controls

- Control definition
 - strict criteria for absence of disease of interest
- Selection of controls (sample of all controls) - must represent the population from which the cases came
 - Could have been included as cases if had developed the disease of interest
- Ratio of controls:cases

 - Usually 1:1
 If cases limited can go up to 4:1 to increase power

Measuring exposure

- · Exposure information
 - Records
 - Questionnaire
 - Recall risk factors / exposures in the past
 - Blood measurements
- Must be collected in a comparable way for cases and controls

Hepatitis B infection and hepatocellular carcinoma in the Gambia Hepatology 2004; 39: 211-9				
		HC	C	
		Cases	Controls	
Hepatitis	В			
sAg	Positive	Positive 106 (56%) 62 (16%)		
	Negative	82	338	
	Total 188 400			
Univariate Odds Ratio = <u>106/82</u> = <u>1.293</u> = 7.07 62/338 0.183				

How to deal with confounding

- Matching
 - Eg match cases and controls for age, sex
 - Disadvantage: can't assess effects of these factors
- Stratification
 - Eg if effects seen in non-smokers, smoking can't confound
- Multivariate analysis
 - Multiple logistic regression

Leukaemia near nuclear plants

- La Hague: nuclear waste reprocessing plant
- 1978-1993: 27 cases of leukaemia < 25 yrs old
- 192 controls (up to 10 per case)
 - recruited from GP's
 - matched for sex, age, place of birth, place of residence
- Parents interviewed about risk factor exposure

BMJ 1997; 314: 101-6

Leukaemia near nuclear plants				
		caemia Controls	OR (95% CI)	
Rec activity or local beaches		440	4.0	
< once/month <p>≥ once/month</p>	10 17	110 82	1.0 2.9 (1.1 - 8.7)	
			. ,	

Cellular phones and brain cancer

- 5 US hospitals
 1994-1998
- 469 cases of primary brain cancer
- 422 controls without brain cancer
 hospital patients with other diseases
- Interview (questionnaire)
 use of cellular phones

JAMA 2000; 284: 3001-7

Cellular phones and brain cancer				
		Brain	cancer	
		Cases	Controls	
Cell phone	Yes	66	76	
use	No	403	346	
Odds ratio = <u>66/403</u> = 0.75 (0.51 to 1.09) 76/346				

	Cases	Contro	ls
Cell phone	n (%)	n (%)	OR* (95% CI)
use (years)			
0	403 (86)	346 (82)	1.0
1	21 (5)	30 (7)	0.7 (0.4 - 1.3)
2-3	28 (6)	24 (6)	1.1 (0.6 - 2.0)
4+	17 (4)	22 (5)	0.7 (0.4 - 1.4)

Selenium intake and asthma <i>Am J Respir Crit Care Med</i> 2001; 164: 1823-28.				
Intake/day	OR [*]	(95% CI)		
1	1.0			
2	0.95	(0.66 to 1.36)		
3	0.69	(0.46 to 1.03)		
4	0.53	(0.34 to 0.81)		
5	0.56	(0.35 to 0.89)		
*adjusted odds ratio		p trend 0.0015		

Paracetamol use and asthma <i>Thorax</i> 2000; 55: 266-70.					
	Cases Controls				
Freq.	n (%)	n (%)	Adj OR (95% CI)		
never	98 (15)	153 (17)	1.00		
<monthly< td=""><td>259 (39)</td><td>424 (47)</td><td>1.06 (0.77 - 1.45)</td></monthly<>	259 (39)	424 (47)	1.06 (0.77 - 1.45)		
monthly	172 (26)	219 (24)	1.22 (0.87 - 1.72)		
weekly	105 (16)	97 (11)	1.79 (1.21 - 2.65)		
daily	30 (5)	17 (2)	2.38 (1.22 - 4.64)		
			p trend 0.0002		

Nested case control studies

- "Nested" within a cohort study
- Example: prospective cohort study
 - Does low blood selenium predict ↑ risk of lung cancer?
 - Blood samples taken at baseline and frozen
 - Follow-up and collection of mortality data
 - At end of study define cases and controls
 - Measure selenium in stored samples of cases and sample of controls only
- · More efficient for costly exposure measurements

Case control studies

- · Strengths
 - quicker and cheaper than cohort studies
 - study rare diseases
 - study multiple risk factors
 - study diseases with long latent period
- Limitations
 - prone to selection and recall bias
 - inefficient for rare exposures
 - may be difficult to establish temporality

Interpretation of observational study findings

Are the statistical findings valid?

- Chance?

- What is level of statistical significance (P value)?
- Bias?
- Confounding?
 - Was this adequately addressed in design and analysis?
- Are the findings generalisable?
- Is the association likely to be causal?
- How important are the findings for Public Health?

Selection bias

- Can occur if selection of cases or controls is related to exposure of interest
 - eg study of smoking & lung cancer; controls with COPD
- Can occur if poor/differential response rates
 - Association between exposure and outcome may be different in those in the study vs those not included

Information bias: exposure data

- Reporting by cases and controls
 - Unreliable if exposure a long time ago
 - Differential (recall bias)
- Interviewing by observers
 Probe more if aware of case-control status (and hypothesis)
- Minimise bias in exposure measurement by
 Blinding of researchers to case control status
 - Blinding of participants to hypothesis

Importance of the prenatal environment

"The only clever thing I did was to remember that life begins at conception, not at birth...."

Alice Stewart

	Prenatal X-rays and childhood malignancies BMJ 1958; 1: 1495-1508				
	Cases	Controls			
X-rays					
Yes	141	81			
No	1125	1204			
	$\frac{1/1125}{1/1204} = \frac{0.1}{0.0}$				

	Smoking and lung cancer BMJ 1950; 739-48 Lung cancer (males)				
	Cases Controls				
Smokers	647	622			
Non-smokers	2	27			
	647/2 = 622/27	14.0			

Cholera outbreak in Nigeria J Water and Health 2003					
	Cases Controls				
Drunk water					
from street					
vendors:	Yes	55	18		
	No	44	55		
OR = <u>55/44</u> 18/55	= <u>1.2</u> 0.32		.8 (1.9 – 7.9)		

Essential reading Week 6

- Relevant to this lecture (case control studies) although we won't discuss until Week 7 seminar (Week 6 seminar relates to your assignment).
- Barker D, Cooper C, Rose G. Epidemiology in medical practice. Chapter 5.
- Fleming PJ et al. BMJ 1996; 313: 191-5.
- **NB** Please read this paper and the Introduction to the tutorial **BEFORE** the seminar in week 7.