MSc/BSc Programmes in International and Global Health Epidemiology and Statistics Week 2:

What is a normal weight for a baby?

Richard Hooper

Barts and The London

www.smd.qmul.ac.uk

What is a normal weight for a baby?

No two babies weigh exactly the same – weight is continuously variable

So what is a "normal" weight?

Barts and The London www.smd.qmul.ac.uk

What is a normal weight for a baby?

No two babies weigh exactly the same

 $-\operatorname{weight}$ is continuously variable

So what is a "normal" weight?

A Barts and The London

Sample of 100 boys

- central line marks the median in the sample (half the sample below)
- box marks out lower and upper quartiles (1/4 & 3/4 of the sample below)
- whiskers mark out full range of values (with some additional subtleties – see Bland)

Means and medians

- Mean and median are both ways of describing a
 "typical" value
- The mean has some useful mathematical properties, but is only really "typical" when the shape of the distribution is symmetric

🕁 Barts and The London

Means and medians

The mean is the "balancing" point of the distribution, if you imagine it balanced on a pivot.

With a strongly asymmetric distribution the mean is unduly influenced by the long **tail**

Means and medians

- For a symmetric distribution, summarise using mean and standard deviation
- For an asymmetric distribution, summarise using median and interquartile range

💩 Barts and The London

Type of varia	ıble	Example	Values	
	Binary	Mortality	Dead / Alive	
Categorical	Nominal	Eye colour	Blue / Brown / Grey / Green	
	Ordinal	Severity of disease	Mild / Moderate / Severe	
Quantitative	Discrete	Number of siblings	0, 1, 2, 3,	
	Continuous	Weight		

Type of varia	ble		Example	Values
	Binary		Mortality	Dead / Alive
Categorical	Nominal	Discrete	Eye colour	Blue / Brown / Grey / Green
	Ordinal		Severity of disease	Mild / Moderate / Severe
	Discrete		Number of siblings	0, 1, 2, 3,
Quantitative	Continuous		Weight	

Continuous and discrete quantitative variables

- Measurements are almost never truly on a continuous scale – we record values to a certain number of decimal places or digits
- Any discrete quantitative variable where the difference between successive values is small compared with the range of possible values is often treated as continuous
- Discrete quantitative variables are often summarised with mean or median, just like continuous variables

Arts and The London

Relationships between variables

When thinking about the relationship between two variables, it often helps to think of one as the **outcome** and the other as the **predictor** (or **exposure**)

Relationships between variables

The same variable might be an outcome in one context, and a predictor in another

e.g.

Derts and The London

sex (M/F) vs smoking status (never/ex/current): sex is predictor → smoking status is outcome

but

smoking status vs symptoms of breathlessness: smoking status is predictor → breathlessness is outcome

🕁 Barts and The London

www.smd.qmul.ac.uk

Smoking status	Sex			Total		
	Male		Fe	Female		
	No.	%	No.	%	No.	%
Never	76	33,3%	143	52.6%	219	43.8%
Ex	87	38.2%	74	27.2%	161	32.2%
Current	65	28.5%	55	20.2%	120	24.0%
Total	228	100.0%	272	100.0%	500	100.0%

smoking c	and pe ategor	rcentages ries, by se	x x	pie in aiffe	rent	
Smoking status	Sex Mole			То	tal	
	No.	wale %	No.	male %	No.	%
Never	76	33,3%	143	52.6%	219	43.8%
Ex	87	38.2%	74	27.2%	161	32.2%
Current	65	28.5%	55	20.2%	120	24.0%
Total	228	100.0%	272	100.0%	500	100.0%
			Relativ outcom	e frequencie le worked o ries of the p	es of the ut within redictor	

٦

Г

14

Normal weight for a baby: what does "normal" mean?

"normal" = Normal distribution?

Don't be confused by this terminology – not all naturally occurring measurements are Normally distributed

e.g. distribution of boys' weights at 6 months is skewed (non-Normal)

A Barts and The London

www.smd.qmul.ac.uk

"normal" = commonly seen

Could summarise this with a mean or median

e.g. median weight for a 6-month-old boy is 7.9kg

but this ignores variability

🕁 Barts and The London

Normal weight for a baby: what does "normal" mean?

"normal" = commonly seen

Often summarised using percentiles

e.g. boys' weights at 6 months: 3rd centile = 6.4kg 97th centile = 9.7kg 94% of six-month-old boys weigh between 6.4kg and 9.7kg

Arts and The London

www.smd.qmul.ac.uk

Normal weight for a baby: what does "normal" mean? "normal" = commonly seen in a healthy population e.g. WHO growth standards limited to children from high social class families, with non-smoking, breastfeeding mothers

16

Normal weight for a baby: what does "normal" mean?

"normal" = leads to good health outcomes

Requires evidence of the health consequences of different weights

"Normal" in this sense does not necessarily mean "commonly seen"!

Arts and The London

Summary

The word "normal" is used in a variety of ways in health statistics:

- a Normal distribution
- · what is commonly seen
- · what is commonly seen in a healthy population
- · what leads to good health outcomes

Always make sure you understand which is meant!

👾 Barts and The London