Theoretical Treatment of Nano-Systems (TTNS | INK7037U)

Description: An increasing amount of science and technology is nowadays concerned with processes at the nanometer scale, typically involving functionalized structures like particles and molecules. Time scales of picoseconds are the natural ones to describe the vibrational/conformational properties of these systems, and the relevant steps of their synthesis/assembly mechanisms. Such a high time/size resolution poses extremely demanding constraints to experimental techniques.

A detailed theoretical description and quantum-based numerical modelling have thus become indispensable tools in modern research on this systems, as guides for interpreting the experimental observations and, increasingly, as independent complementary investigation tools, capable of quantitative predictions. The relevant physics at the nanoscale is quantum mechanics, and quantum approaches must be used to provide the potential energy surfaces and the structural/configurational properties which are at the basis of classical molecular dynamics techniques and phase-space descriptions.

This course provides an introduction to the rapidly growing area of atomistic-based theoretical modelling in nano-science, based on fundamental quantum theory. The course introduces the physics of many-electron systems with a particular focus on symmetry properties and on the simplifying assumptions which must be used to successfully model functional nanosized systems. While a main goal of the course is to provide a theoretical background on the structure and quantum behaviour of matter at the nano-scale, examples of applications given during the course involve modern concepts on the nano-scale behaviour of functional materials, and provide an accessible introduction to some of the main theoretical techniques used to model processes involving surfaces, interfaces, clusters, and macromolecules.

This module is taught by KCL.