

Mass Transfer and Separations Processes I Revision Lecture

DEN5406

Dr Stoyan Smoukov

School of Engineering and Materials Science Queen Mary, University of London Mile End Road, E1 4NS London s.smoukov@qmul.ac.uk

www.aimlabs.org

Outline

- 1. Cooking intro learn concepts but also solve them in Excel
- 2. Purifying dirty water to drink
 - a. Sterilizing methods kill or remove pathogens membrane
 - b. Purifying from chemicals distillation in space
 - c. Freezing for purification
 - d. Separating Azeotropes
 - e. Desalination by ion exchange and reverse osmosis
- 3. Purifying dirty oil > so it can be used as fuel, or not spoil
 - a. Mechanical separation filtration
 - b. Mechanical separation centrifugation
- 4. Extraction from Solids
 - a. Espresso from ground beans
 - b. Extracting oil from pressed beans and olives
 - c. Leaching metals from ores
- 5. Drying solids preserving foods
 - a. Getting rid of water or stripping the water

Filtration – Quantitation

$$v_F = \frac{\Delta P}{\eta \left(R_M + R_C \right)}$$

Resistance due to filter medium And to cake (R_M and R_C)

$$v_F = \frac{1}{A} \frac{dV}{dt}$$

superficial filtrate velocity v_F

$$\Delta P = \Delta P_C + \Delta P_M = \eta \, \frac{R_C + R_M}{A} \, \frac{dV}{dt}$$

Darcy's Law

De Haan & Bosch, Industrial Separation Processes, 2013, Ch 10.

Filtration – Incompressible Cake Incompressible cake causes:

a linear increase in resistance R_c with cake height

w is mass dry solids per filter area A $w = \frac{c V}{A}$ [kg/m2] where c is kg solids per volume V of suspension

The proportionality slope R_c / w is α - the <u>specific cake resistance</u> [m/kg]

^o w, dry mass solids per unit area $\frac{R_C + R_M}{A} \frac{dV}{dt} \Rightarrow \Delta P = \frac{\eta c \alpha}{A^2} V \frac{dV}{dt} + \frac{\eta R_M}{A} \frac{dV}{dt}$

Simple s	VS. ame, ye	Flash Distillation
Batch	VS.	Continuous
$y = \frac{\alpha x}{1 + (\alpha - 1)x} \text{with}$	$\alpha = \frac{K_A}{K_B}$	continuous feed is partially vaporized to give a vapor richer in the more volatile components

Single stage separation efficiency. **Relative volatility** *α* is the equilibr. VL- constant, also referred to as *K* vaporized to give a vapor richer in the more volatile components. limited degree of separation Uses:e.g. seawater desalination, Where bp differences are high

Above is derived from Two Mass Balances – One for whole liquid, one for a component in the liquid

F = V + L and Fz = Vy + Lx

Here F is the total fluid and V, L – vapor and liquid separated

z, y, x, and the mole fractions of a component in fluid, vapor, liquid

Multi-Stage and Column Distillation with Rectification Top vapor = product

Part condensed, fed back Words for vocabulary: distillation column, Reflux, rectification, reflux ratio, reboiler, Operating pressure

The **Reflux ratio R** = **L**/**D** is the ratio of reflux flow (**L**) to distillate flow (**D**) (**L** Being returned back to the column for re-distilling)

Two-Phase Equilibria

In Distillation

$$K_i \equiv \frac{y_i}{x_i}$$

$$\alpha_{ij} = \frac{K_i}{K_j}$$

the **relative volatility** of **i** Determines the selectivity of Separation vs a reference **j** is

How do we measure relative volatility?

$$p_i = y_i P_{tot}$$

$$p_i = x_i P_i^0$$

Dalton's law relates concentration of
components in an ideal gas or toRaoult's law
in the vapor (
in the vapor (
in the liquid (

Raoult's law gives partial pressure in the vapor (*pi*) from concentr. in the liquid (*xi*) mixture

ombination gives:

$$y_i P_{tot} = x_i P_i^0$$
 $K_i = \frac{y_i}{x_i} = \frac{P_i^0}{P_{tot}}$ and $\alpha_{ij} = \frac{K_i}{K_j} = \frac{P_i^0}{P_j^0}$

Operating condition: T and L/V Graphical Determination – Mole Fractions

0 0.20 0.40 0.60 benzene mole fraction liquid (×1000)

Operating condition: T and total Pressure P Graphical Determination – Mole Fractions P_{tot} = constant Vapor T₁ Now we have to find q dew point **q** = <u>L</u> = <u>Fraction of feed remaining</u> line liquid Yeq temperature Teq Xeq by eliminating x, y from the Vapor **Operating Line equation**: Liquid bubble $y = -\frac{q}{1-a}x + \frac{1}{1-a}z$ point line T₂ Liquid And **Equilibrium line**: X,Y $\frac{y}{1-y} = \alpha \cdot \frac{x}{1-x}$ given *T*, *P*_{tot} – the *K*_i are known constants, so $q = -z \frac{K_B}{1 - K_B} - (1 - z) \frac{K_A}{1 - K_A}$ and $x = \frac{1 - K_B}{K_A - K_B}$

Graphical Determination of # of equilibrium stages:

First location after horizontal crosses the q-line.

the **operating line** is a straight line in the *y*-*x*-diagram with an intersection at $y = x_D$ on the y = x line, for **specified values of** *R* and x_D (purity of distillate)

For most commercial operations the optimal operating reflux ratios are in the range of 1.1 to 1.5 times the minimum reflux ratio.

Operational cost

One question raised in the revision section – *how does one determine the optimal location of the feed stage*? In the following example, both the distillation and condensation stages are analyzed, and one sees how to find the stage for the initial (specified) composition.

<u>https://youtu.be/0PFVXqLxNF0?t=128</u> and more detailed examples:

Distillation Column Example Using the McCabe-Thiele Method

Acetone and ethanol are separated using a distillation column with a partial condenser and partial reboiler. An equimolar, sub-cooled liquid feed enters at 100 kmol/hr and condenses 1 mole of vapor for every 6 moles of feed. The separation requires a distillate vapor that is 95 mol% acetone and bottoms liquid that is 5 mol% acetone. The reflux is returned from the condenser to the column as a saturated liquid and the operation is run at $(L/V) = 1.4*(L/V)_{min}$. Assume constant molar overflow conditions.

Perform the following:

- A) Plot the operating lines for the rectifying and stripping sections and the feed line.
- B) Determine the number of equilibrium stages required and number of trays if each tray has an efficiency of 1.
- C) Determine the optimal feed location.
- D) Determine the molar flow rates in and out of the condenser (V and D) and boiler (L and B).

https://youtu.be/Cv4KjY2BJTA?t=7

See how after finding the two operation lines One finds the feed location is in stage 7. <u>https://youtu.be/eIJk5uXmBRc?t=190</u>

Operating Lines for Absorption

McCabe-Thiele diagram for absorption operating line in absorption is above the equilibrium line

Absorption and Stripping Υ mole ratio solute in gas Y_{N+1} operating line equilibrium line (L'/G')_{min} $\mathbf{Y}_1, \mathbf{X}_0$ X, mole ratio solute in liquid

McCabe-Thiele diagram for minimum L/G ratio for absorption

Absorption and Stripping ~ 00 stages Lmin 180 - phase eq. 160 $\frac{(200-10)}{(1.42-0)}$ 5lope= 140 Slope = 133.8 120 Line for absorption: Operation (00) Sim 80 60 33.8 40 MIN 187.3 20 02 1,0 0.8 0.1 0.4 0.6 1.2 1.4 X ppm National Science Foundation, Shell, CU-EEF & University of Colorado Boulder Department of Chemical and Biological Engineering

McCabe-Thiele diagram for minimum L/G ratio for absorption

NSF, Shell, and CU Boulder Chem.Eng. https://goo.gl/ZPT1kC

McCabe-Thiele diagram for minimum L/G ratio for absorption NSF, Shell, and CU Boulder Chem.Eng. https://goo.gl/ZPT1kC

Absorption – Note in example:

You won't need to determine # variables or DOF,

https://youtu.be/BoPKngZZwVI?t=317

Start at this timepoint with <u>Henry's</u> law Dependent of Control and Bological And Stry to solve the problem. https://youtu.be/BoPKngZZwVI?t=349

The example is done step-by-step in detail also graphically, and you see a lot of the correspondences with the McCabe-Thiely analysis for distillation.

How Long Does a Filter Last?

https://www.thameswater.co.uk/help-and-advice/water-quality/check-the-water-quality-in-your-area Calculate life for a C150 filter Hardness

with 267 ppm water?

The water supplied in the MILE END zone is HARD water.

Calcium carbonate(CaCO3): 267 ppm

PURITY C Finest	C150	C500		
Technology	softening			
Capacity ¹ with a total hardness of 10 °dH and 0 % bypass ²	1.100 I	3.414 I		
Max. operating pressure	8,6 bar			
Water intake temperature	4 – 30 °C			
Flow at 1 bar pressure loss	145 l/h	140 l/h		
Nominal flow	60 l/h	100 1	/h	
Pressure loss at nominal flow	0.25 bar	0.5 bar		
Dimensions (W/D/H) Filter head with filter cartridge	117/104/419 mm	144/144/557 mm		
Weight (dry/wet)	1.8/2.8 kg	4.6/6.9 kg		

10 dH = 178 ppm, so Capacity = 1100 L *178 mg/L = 196g CaCO₃ so x = 196 g / 267 mg/L = 734 L And it costs £74

So £74 / 734 L = £0.10 / L – for good tasting and no-scale water If it cleans molecular ions, does it also filter bacteria and viruses?

Osmotic Pressure

Osmotic pressure determined for different salts: https://youtu.be/AGRjXcB14qA?list=PL61BFC1C064B40049&t=31

An osmotic shock disruption process was determined to require less than 0.01 M NaCl to disrupt cells which contain salt roughly equivalent (in osmotic terms) to 0.1 M NaCl at 25C. To improve downstream processing, the disruption system will be changed to use MgCl₂ instead of the NaCl. Estimate the required concentration of MgCl₂ to effectively lyse the cells at 25C.

See if you can first solve the problem yourself, Then continue the video to see the solution if you need to.

Drying –

Terminology and Learning Goals

By the end of this lecture you'll be able to: **drying.** (how prosaic!) Yet, in a quantitative way in which none of your friends outside this class would be able to.

Say what are wet-bulb temperature, absolute humidity, relative humidity, . Other vocabulary: Chilton-Colburn transfer numbers for heat and mass, See this concise summary: <u>https://www.youtube.com/watch?v=7YIQ_4jL_gs</u>

We'll identify Drying Mechanisms and

Derive simplified rate equations to estimate drying times

Discuss Drying Methods and Drying Equipment

Applications in: Foods, building materials, powders, papers, fabrics

Discuss Efficiency and cost –

Drying vs. unnecessary transportation of products containing water

Bread Rusk and Hair Drying

Need to strike an optimum balance between Temperature and Drying Rate

Drying – Wet Bulb Temperature

When the amount of air >> amount of evaporated moisture The dynamic equilibrium (non-equilibrium steady state) Temperature of a wet surface is called T_{wb} , the <u>wet-bulb temperature</u>

$$\Phi_{vap} \cdot \Delta H_{vap} = h (T_f - T_{wb})$$
 units [J s⁻¹ m⁻²]
Drying rate Energy transfer
Energy from the surface

where

h = heat transfer coefficient (convection) [W m⁻² K⁻¹] ΔH_{vap} = molar heat of evaporation [K]

Examples – Passive cooling in non-glazed pottery T_{wb} indicates max amount of vapor that can be carried the dry gas

Air Humidity – From Wet-Bulb Temp.

Relating Wet and Dry-bulb temperatures – via adiabatic cooling lines

Fig. 7.3 Psychrometric chart of air-water at 1 bar total pressure (adapted from [56]).

Properties of Air - Psychrometric Chart

Psychrometric Chart - Interactive

https://youtu.be/IVwniWExPgA?t=207

Psychrometric Chart - Practice

Saturation Vapor Pressure of Water

Drying – Slowly at Low Vapor Pressures

For low drying rates, and low vapor concentrations c, drying rate Φ_{vap} is proportional to the driving force $(c_{sat(Ts)} - c_f)$

Drying rate Φ_{vap} units [mol s⁻¹ m⁻²]

$$=k_g\left(c_{sat(Ts)}-c_f\right)$$

where

 T_f = temperature of heated air (with concentration c_f)

 T_s = temperature of wet surface [K]

 c_{sat} = saturation vapor (water) concentration at T_s [mol m⁻³] c_f = vapor (water) concentration in *feed* gas (air) [mol m⁻³] k_g = mass transfer coefficient [m s⁻¹]

Air Humidity – From Wet-Bulb Temp.

temperature (a.u.)

When stream of air Φ_{air} at T_f is mixed thoroughly and adiabatically, with liquid at T_{sat} , it leaves completely saturated with vapors (@Tsat)

Drying – Wet Bulb Temperature

When the amount of air >> amount of evaporated moisture The dynamic equilibrium (non-equilibrium steady state) Temperature of a wet surface is called T_{wb} , the <u>wet-bulb temperature</u>

$$\Phi_{vap} \cdot \Delta H_{vap} = h (T_f - T_{wb})$$
 units [J s⁻¹ m⁻²]
Drying rate Energy transfer
Energy from the surface

where

h = heat transfer coefficient (convection) [W m⁻² K⁻¹] ΔH_{vap} = molar heat of evaporation [K]

Examples – Passive cooling in non-glazed pottery T_{wb} indicates max amount of vapor that can be carried the dry gas

Bound/Unbound Water and Structure of the solid – lead to different drying regimes and mechanisms

Drying Solids – Water in Pores

 $p_{sat} = p_{sat}^{\infty} \exp \frac{V_{liq} (P_{liq} - P)}{R T}$ where V_{liq} = molar volume of liquid. Pressure in the liquid can affect pressure above it

$$P_{liq} - P = \gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

Pressure in curved geometries – from Laplace Eqn.

Pressure in Droplets vs Bubbles

Pressure in curved geometries – from Laplace Eqn.

Pressure in Bubbles and Pores

Pressure to empty pore

Pressure to Fill pore

Drying Porous Solids

Ideal Cyllinder Pores

Irregular Pores

Adsorption/ desorption hysteresis