

DEN5406: Mass Transfer and Separations Processes I

Week 10: Drying, Advanced Adsorption and Exchange, and Separation Method Selection

Dr Stoyan Smoukov

School of Engineering and Materials Science

Queen Mary, University of London

Mile End Road, E1 4NS London

s.smoukov@qmul.ac.uk

www.aimlabs.org

Separations and Syllabus Goals

Obtain Quantitative Understanding of the following processes:

- ✓ Filtration ✓ we started and continue! We'll also cover this week:
 - Aggregation
- Centrifugation
 - **Crystallization (controlled freezing) separation**
 - **Adsorption**
- ✓ Leaching (extracting metals from ores, making coffee, dry cleaning)
- ✓ Osmosis
 - **Forward Osmosis**
 - **Reverse Osmosis**
- ✓ Ion-exchange membranes

Drying

Distillation (controlled evaporation and condensation) and the many kinds of distillation

Applications: Surviving in Space, on a desert island without fresh water

Recommended Reading

Available on Knovel – in the library:

De Haan & Bosch, Industrial Separation Processes, 2013, de Gruyter (Berlin)

Distillation Fundamentals and Principles, Gorak & Sorensen, eds., 2014, Elsevier

Reactive & Membrane-Assisted Separations, Lutze & Gorak, eds., 2016, de Gruyter

Also from

Seader, Henley, & Roper, Separations Process Principles, 2011, Wiley

Pre-assigned class reading -> will have a chance to discuss problems in class

Drying of Solids:

Ch. 7 in

De Haan & Bosch, Industrial Separation Processes, 2013, de Gruyter (Berlin)

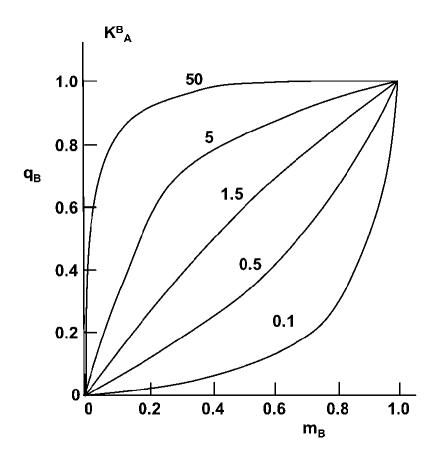
Types of Exchange Resins

Sulfonated side groups for Cation exchange

Aminated side groups for Anion exchange (Cl⁻ or OH⁻ form)

De-ionization of water makes use of both types of resins.

Cationic resins are placed first to avoid precipitaiton of metal hydroxides


Mixed bed systems give better results than sequential columns.

Styrene-divinyl benzene based exchange resins

Ion-Exchange Capacity and Rate

For Cations B+ from solution in exchange for A+ on the resin:

resin-SO₃
$$^-$$
A⁺ + B⁺ \Leftrightarrow resin-SO₃ $^-$ B⁺ + A⁺

Univalent ion-exchange plot

$$K_A^B = \frac{q_{B, resin} \, m_{A, liquid}}{q_{A, resin} \, m_{B, liquid}}$$

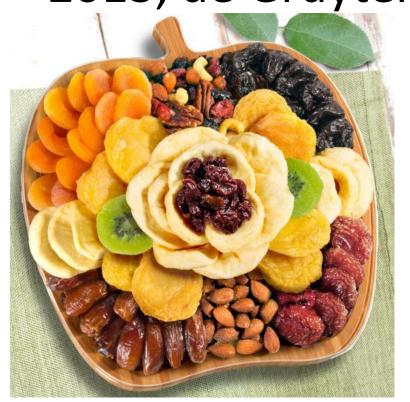
Equilibrium constant determining selectivity of a resin for B over A

q = capacity (conc.) ions in resin
[mol/kg]

m = concentrations of the ions in the solution [mol/L] or [mol/kg]

B is preferred if $K_A^B > 1$

Problem Solving


Sulfonated side groups for Cation exchange Problem 7. A commercial ionexchange resin is made of 88 wt% styrene (MW = 0.104 kg/mol) and 12 wt% divinyl benzene (MW = 0.1302 kg/mol). Estimate the maximum ionexchange capacity in equivalents/kg resin when an sulfonic acid group (MW = 0.0811 kg/mol) has been attached to each benzene ring.

How do we go about solving this?

Hints: What is ion-exchange capacity?

What are the units of capacity?

Drying of Solids Please read – Ch. 7from De Haan & Bosch, Industrial Separation Processes, 2013, de Gruyter (Berlin) (on Knovel)

You'll learn about drying fruit, and bread, and vapor in pores

Drying – Slowly at Low Vapor Pressures

For low drying rates, and low vapor concentrations c, drying rate Φ_{vap} is proportional to the driving force $(c_{sat(Ts)} - c_f)$

Drying rate Φ_{vap} units [mol s⁻¹ m⁻²]

$$= k_g \left(c_{sat(Ts)} - c_f \right)$$

where

 T_f = temperature of heated air (with concentration c_f) T_s = temperature of wet surface [K] c_{sat} = saturation vapor (water) concentration at T_s [mol m⁻³] c_f = vapor (water) concentration in *feed* gas (air) [mol m⁻³] k_a = mass transfer coefficient [m s⁻¹]

Drying – Terminology and Learning Goals

By the end of this lecture you'll be able to: **drying.** (how prosaic!) Yet, in a quantitative way in which none of your friends outside this class would be able to.

Say what are wet-bulb temperature, absolute humidity, relative humidity, How to make bread rusk, . Other vocabulary: Chilton-Colburn transfer numbers for heat and mass,

We'll identify **Drying Mechanisms** and

Derive simplified rate equations to estimate drying times

Discuss Drying Methods and Drying Equipment

Applications in: Foods, building materials, powders, papers, fabrics

Discuss Efficiency and cost -

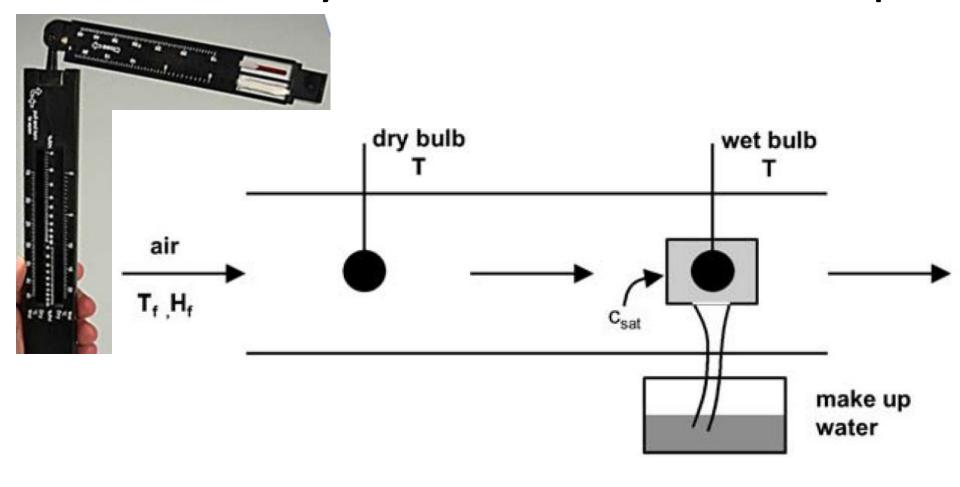
Drying vs. unnecessary transportation of products containing water

Bread Rusk and Hair Drying

Need to strike an optimum balance between Temperature and Drying Rate

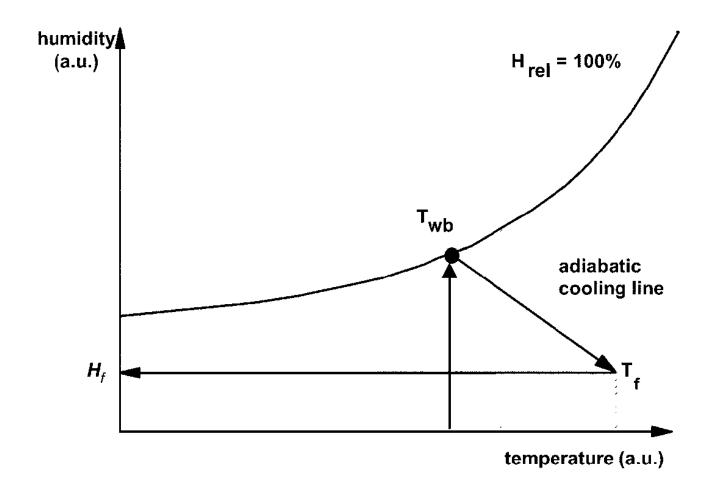
Drying – Wet Bulb Temperature

When the amount of air >> amount of evaporated moisture The dynamic equilibrium (non-equilibrium steady state) Temperature of a wet surface is called T_{wb} , the <u>wet-bulb temperature</u>


$$\Phi_{vap} \cdot \Delta H_{vap} = h (T_f - T_{wb})$$
 units [J s⁻¹ m⁻²]
Drying rate Energy transfer
Energy from the surface

where

h = heat transfer coefficient (convection) [W m⁻² K⁻¹] ΔH_{vap} = molar heat of evaporation [K]


Examples – Passive cooling in non-glazed pottery T_{wb} indicates max amount of vapor that can be carried the dry gas

Air Humidity – From Wet-Bulb Temp.

Psychrometer – measures directly the wet-bulb temperature

Air Humidity – From Wet-Bulb Temp.

Relating Wet and Dry-bulb temperatures – via adiabatic cooling lines

Psychrometric Chart

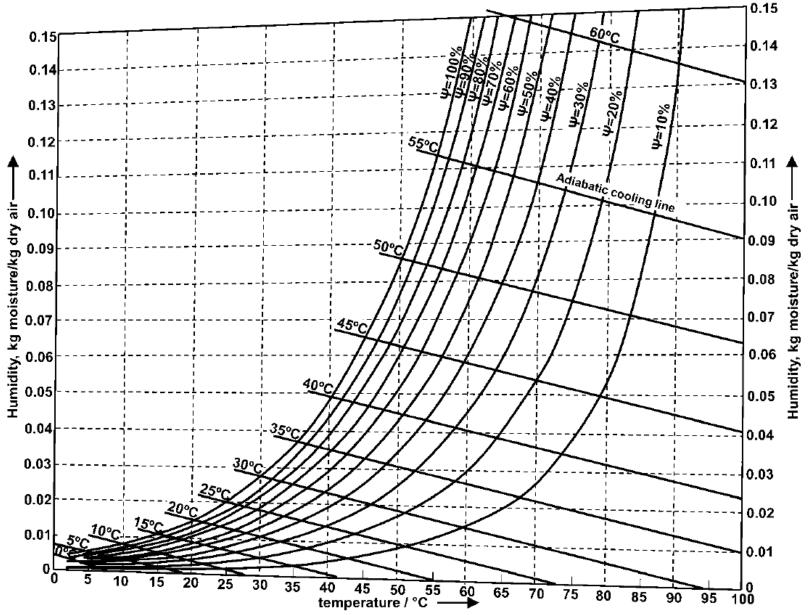
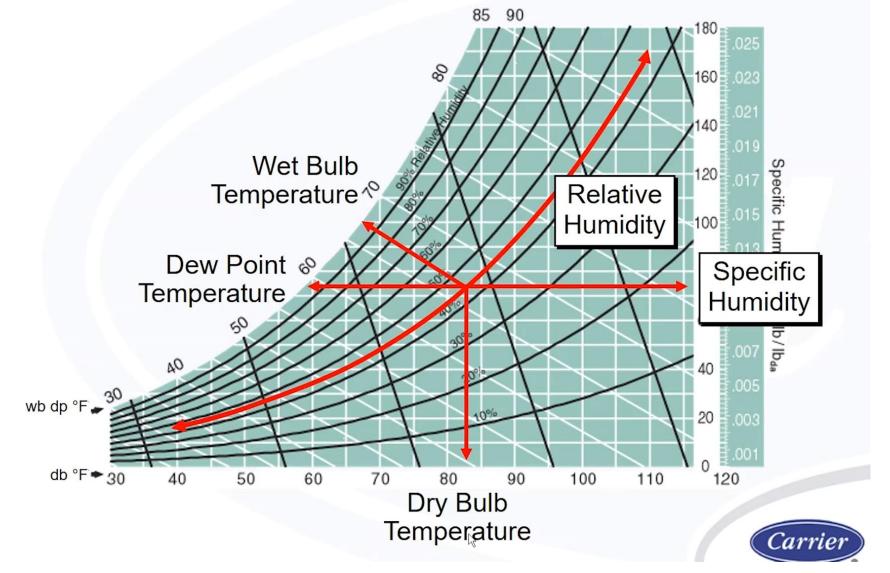
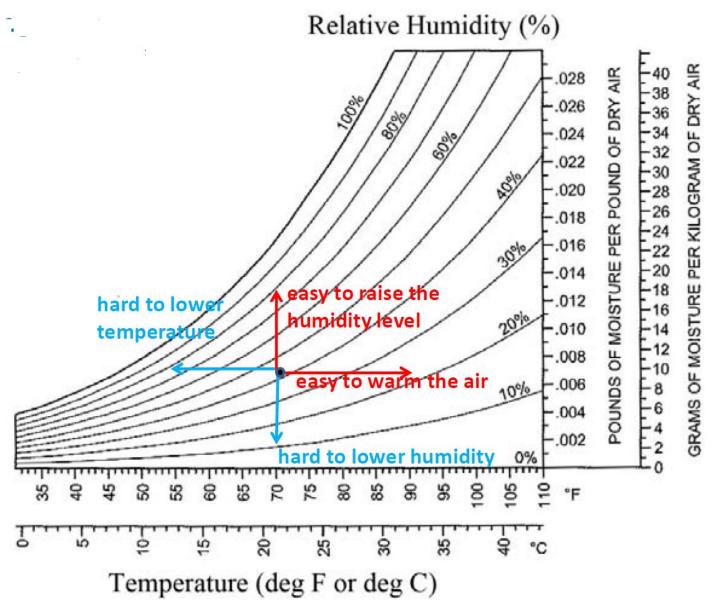
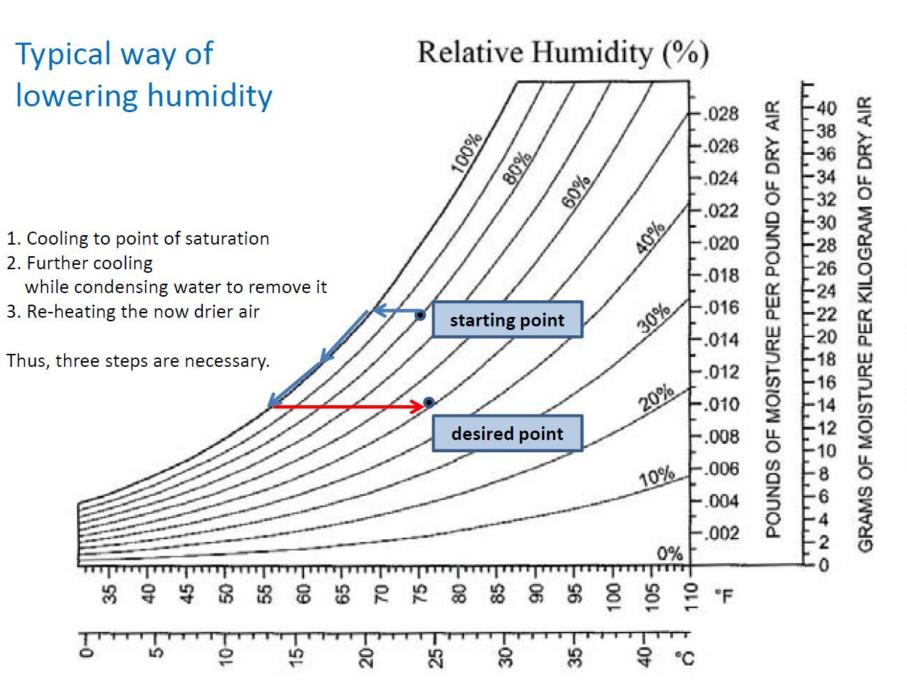
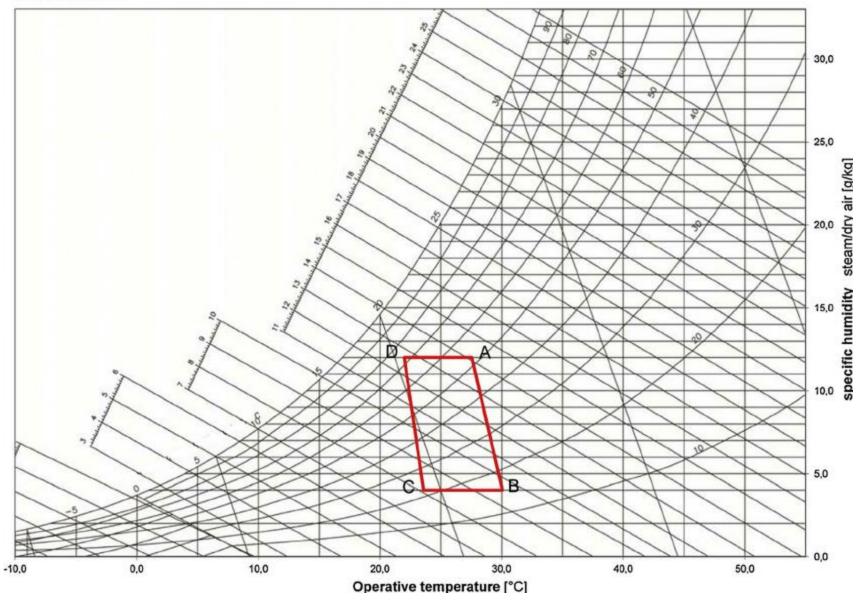




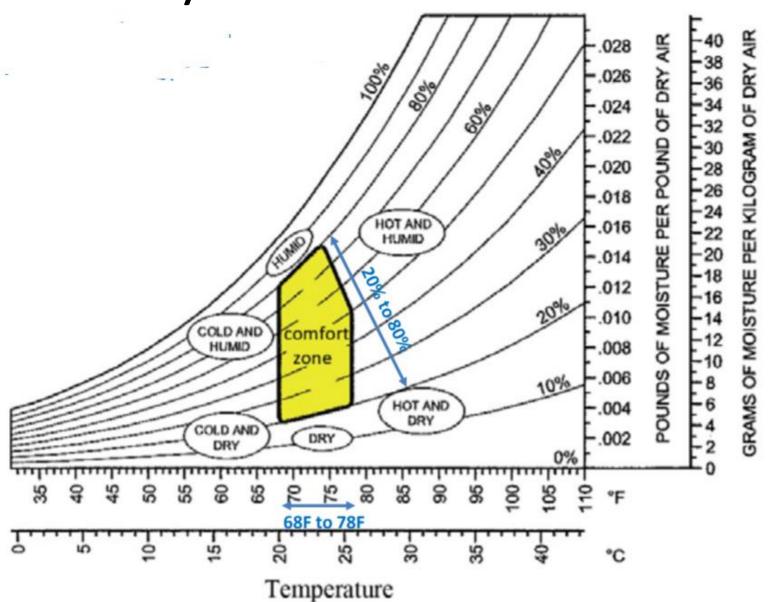
Fig. 7.3 Psychrometric chart of air-water at 1 bar total pressure (adapted from [56]).


Properties of Air - Psychrometric Chart

Psychrometric Chart - Practice



Specific Humidity



Psychrometric Chart

Comfort zone

Psychrometric Chart

Specific Humidity

Comfort Zone

California Energy Code Comfort Model, 2013 (DEFAULT)

For the purpose of sizing residential heating and cooling systems the indoor Dry Bulb Design Conditions should be between 68°F (20°C) to 75°F (23.9°C). No Humidity limits are specified in the Code, so 80% Relative Humidity and 66°F (18.9°C) Wet Bulb is used for the upper limit and 27°F (-2.8°C) Dew Point is used for the lower limit (but these can be changed on the Criteria screen).

○ ASHRAE Standard 55 and Current Handbook of Fundamentals Model

Thermal comfort is based on dry bulb temperature, clothing level (clo), metabolic activity (met), air velocity, humidity, and mean radiant temperature. Indoors it is assumed that mean radiant temperature is close to dry bulb temperature. The zone in which most people are comfortable is calculated using the PMV (Predicted Mean Vote) model. In residential settings people adapt clothing to match the season and feel comfortable in higher air velocities and so have wider comfort range than in buildings with centralized HVAC systems.

http://www.energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php
And http://www.energy-design-tools.aud.ucla.edu/

Climate Consultant App

WEATHER DATA SUMMARY

LOCATION:

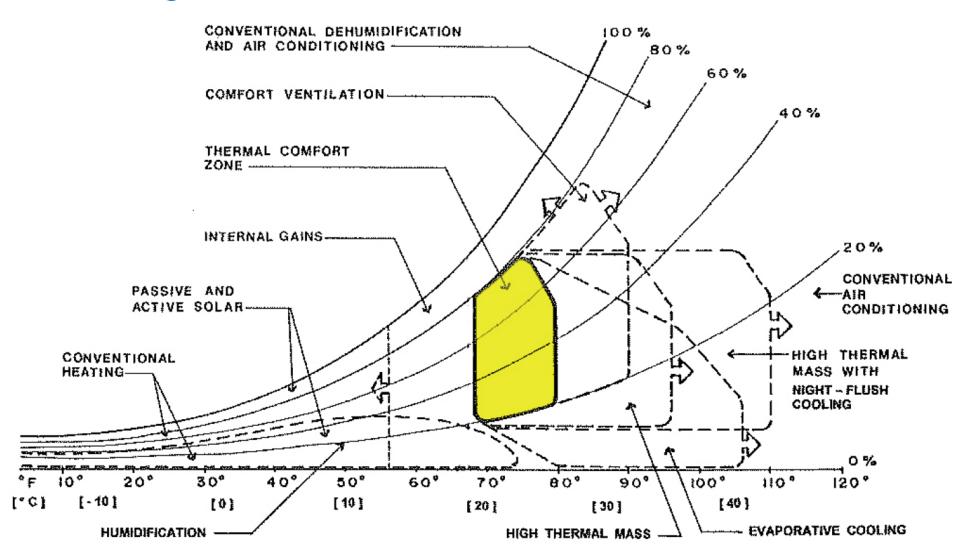
LONDON/GATWICK, -, GBR

Latitude/Longitude: 51.15° North, 0.18° West, Time Zone from Greenwich 0

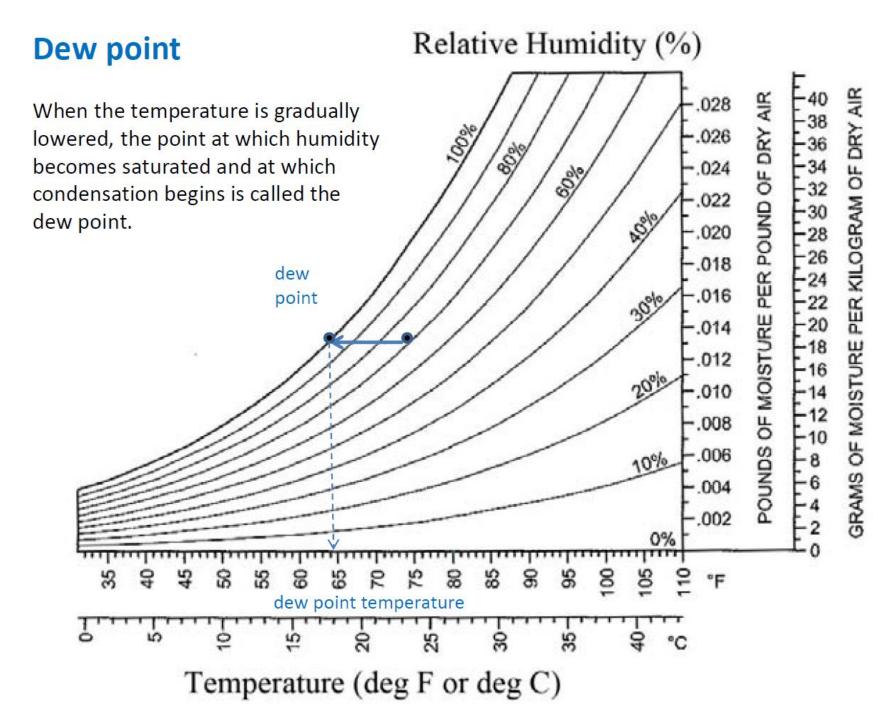
Data Source:

037760 WMO Station Number, Elevation 62 m

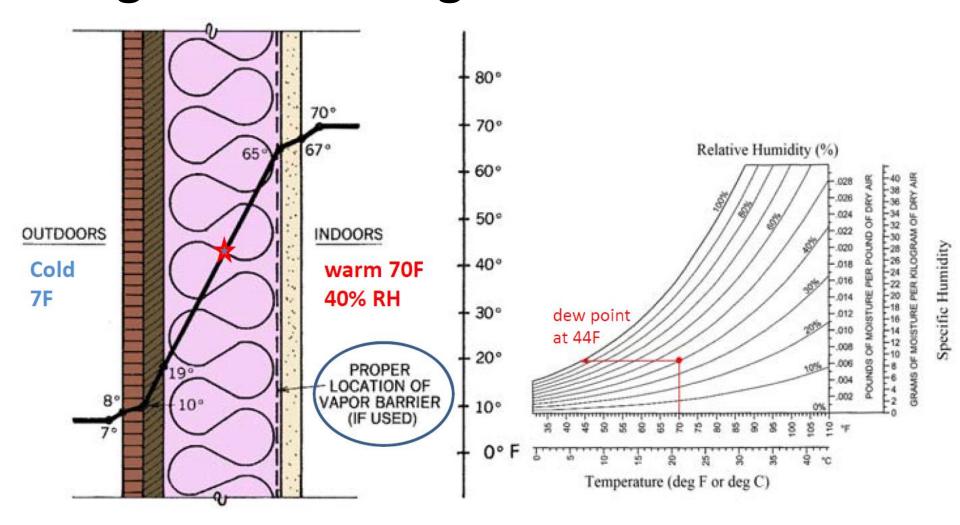
MONTHLY MEANS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
Global Horiz Radiation (Avg Hourly)	87	125	181	267	318	301	317	303	237	167	111	70	Wh/sq.m
Direct Normal Radiation (Avg Hourly)	126	129	113	205	221	167	197	223	183	170	106	67	Wh/sq.m
Diffuse Radiation (Avg Hourly)	56	81	127	145	174	181	182	163	139	97	79	54	Wh/sq.m
Global Horiz Radiation (Max Hourly)	285	447	644	803	884	893	869	811	689	559	351	223	Wh/sq.m
Direct Normal Radiation (Max Hourly)	693	790	846	881	858	854	833	837	800	789	680	466	Wh/sq.m
Diffuse Radiation (Max Hourly)	157	224	348	420	434	459	472	427	386	262	193	133	Wh/sq.m
Global Horiz Radiation (Avg Daily Total)	709	1194	2116	3636	4910	4906	5019	4351	2973	1747	969	548	Wh/sq.m
Direct Normal Radiation (Avg Daily Total)	1024	1222	1309	2784	3441	2729	3117	3203	2306	1775	928	527	Wh/sq.m
Diffuse Radiation (Avg Daily Total)	461	779	1492	1983	2680	2953	2885	2336	1732	1011	691	422	Wh/sq.m
Global Horiz Illumination (Avg Hourly)	9464	13705	19994	29208	34964	33516	35144	33463	26111	18298	12092	7719	lux
Direct Normal Illumination (Avg Hourly)	9816	11252	10630	19924	21383	16366	18845	21293	17287	15267	8703	5091	lux
Dry Bulb Temperature (Avg Monthly)	4	3	6	8	12	15	17	16	13	10	7	5	degrees C
Dew Point Temperature (Avg Monthly)	1	1	3	3	7	9	12	11	9	8	5	3	degrees C
Relative Humidity (Avg Monthly)	81	84	78	75	73	70	75	75	75	86	87	88	percent
Wind Direction (Monthly Mode)	200	80	280	70	210	20	200	210	10	70	180	220	degrees
Wind Speed (Avg Monthly)	3	2	4	3	3	3	2	2	3	2	2	3	m/s
Ground Temperature (Avg Monthly of 3 Depths)	5	6	7	8	11	13	14	14	12	10	7	6	degrees C


http://www.energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php

And weather data from


https://energyplus.net/weather-

location/europe wmo region 6/GBR//GBR London.Gatwick.037760 IWEC


Various technologies to bring indoor air conditions into the comfort zone

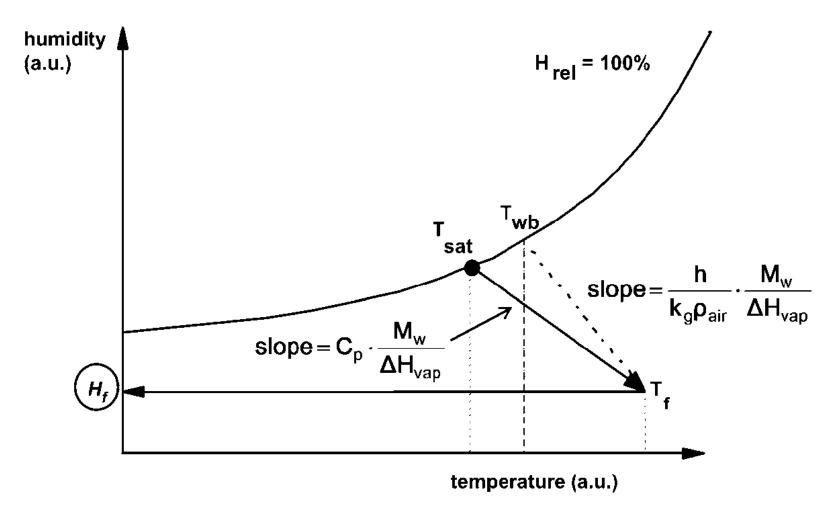
(From Psychrometric-Bioclimatic Chart, copyright by Baruch Givoni and Murray Milne.)

Danger – Reaching Dew Point in a Wall

Vapour barriers - needed to prevent mould

Drying – Slowly at Low Vapor Pressures

For low drying rates, and low vapor concentrations c, drying rate Φ_{vap} is proportional to the driving force $(c_{sat(Ts)} - c_f)$


Drying rate Φ_{vap} units [mol s⁻¹ m⁻²]

$$= k_g \left(c_{sat(Ts)} - c_f \right)$$

where

 T_f = temperature of heated air (with concentration c_f) T_s = temperature of wet surface [K] c_{sat} = saturation vapor (water) concentration at T_s [mol m⁻³] c_f = vapor (water) concentration in *feed* gas (air) [mol m⁻³] k_a = mass transfer coefficient [m s⁻¹]

Air Humidity – From Wet-Bulb Temp.

When stream of air Φ_{air} at T_f is mixed thoroughly and adiabatically, with liquid at T_{sat} , it leaves completely saturated with vapors (@Tsat)