

DEN5406: Mass Transfer and Separations Processes I Week 7: Filtration, Leaching (Extraction),

Washing (& Dry Cleaning), .

Dr Stoyan Smoukov

School of Engineering and Materials Science Queen Mary, University of London Mile End Road, E1 4NS London s.smoukov@qmul.ac.uk

www.aimlabs.org

Separations and Syllabus Goals

Obtain Quantitative Understanding of the following processes:

Filtration - ✔ we started and continue! We'll also cover this week: ✔ Aggregation

Centrifugation

Crystallization (controlled freezing) separation

Adsorption

Leaching (extracting metals from ores, making coffee, dry cleaning)

Osmosis

Forward Osmosis Reverse Osmosis

Ion-exchange membranes

Drying

Distillation (controlled evaporation and condensation) and the many kinds of distillation

Applications: Surviving in Space, on a desert island without fresh water

V

What we will cover

By the end of this lecture you'll be able to:

Say what is caking. Other vocabulary: washing, dewatering, feed conditioning, constant pressure filtration, Filter productivity, cycle time, Rotary vacuum drum filter, vertical disk filter, horizontal belt filter, Nutsche filter, Buchner funnel, plate-and-frame filter press gas filtration, impingement separators, overall on-flow area, wave-plate separators, deep bed filters, inertial and flow-line interception

Measure amount of caking and its effect on filtration Quantify the relationship between caking and pressure drop Different **types of filters** and their **mechanisms**

Devise strategies for mitigating pressure loss and prolong filter life

Quantitate the filtration capacity of single fibers

Efficiency and cost comparisons – Cost of material, and pressure drop (pressure drop not only cost, e.g. max vacuum to generate by mouth in straws)

Recommended Reading

Available on Knovel – in the library:

De Haan & Bosch, Industrial Separation Processes, 2013, de Gruyter (Berlin)

Distillation Fundamentals and Principles, Gorak & Sorensen, eds., 2014, Elsevier

Reactive & Membrane-Assisted Separations, Lutze & Gorak, eds., 2016, de Gruyter

Also from Seader, Henley, & Roper, Separations Process Principles, 2011, Wiley

Will assign pre-class reading -> will have a chance to discuss problems in class

From Last Week: Ch. 10 in De Haan & Bosch, Industrial Separation Processes, 2013, de Gruyter (Berlin)

Efficiency of filter = % particles retained (of a given size) Efficiency vs. pressure drop (lower pressure is better)

Filtration – Caking and membranes

superficial filtrate velocity

Filter Porosity $\varepsilon = \frac{volume \text{ of } voids}{total \text{ bed } volume}$

Filtration – Quantitation

$$v_F = \frac{\Delta P}{\eta \left(R_M + R_C \right)}$$

Resistance due to filter medium And to cake (R_M and R_C)

$$v_F = \frac{1}{A} \frac{dV}{dt}$$

superficial filtrate velocity v_F

$$\Delta P = \Delta P_C + \Delta P_M = \eta \, \frac{R_C + R_M}{A} \, \frac{dV}{dt}$$

Darcy's Law

De Haan & Bosch, Industrial Separation Processes, 2013, Ch 10.

Filtering cold water ($\eta = 10^{-3}$ Pa.s) always topping up to 10.2 cm water, yields 250 cm³ in 1 min. The effective coffee filter area A is 0.0025 m². 1bar =10⁵ Pa= 1020 cm column of water. How many Pa is the pressure?

 $v_F = \underline{1} \underline{dV}$

A dt

What is the resistance of the coffee filter paper? Later you pour the same height of coffee, at 80 °C, $(\eta = 0.333 \times 10^{-3} \text{ Pa.s})$ and collect 200 ml in 1 min. $v_F = \frac{1}{\eta \left(R_M + R_C \right)}$ What is the resistance of the coffee grinds?

Try to define the quantities for the equation yourself It's not too hard – mostly identifying the words that Go with the symbols and plugging in.

The goal of this is literally to change your brain. Looking at the solution does a bad job of that.

Filtering cold water ($\eta = 10^{-3}$ Pa.s) always topping up to 10.2 cm water, yields 250 cm³ in 1 min. The effective coffee filter area A is 0.0025 m². 1bar =10⁵ Pa= 1020 cm column of water. How many Pa is the pressure?

What is the resistance of the coffee filter paper? Later you pour the same height of coffee, at 80 °C, ($\eta = 0.333 \times 10^{-3}$ Pa.s) and collect 200 ml in 1 min. What is the resistance of the coffee grinds? What is the resistance of the coffee grinds? Sometimes there are no solutions – need your own but here's a hint: $\Delta P = \Delta P_C + \Delta P_M = \eta \frac{R_C + R_M}{A} \frac{dV}{dt}$

Filtering cold water ($\eta = 10^{-3}$ Pa.s) always topping up to 10.2 cm water, yields 250 cm³ in 1 min. The effective coffee filter area A is 0.0025 m². 1bar =10⁵ Pa= 1020 cm column of water. How many Pa is the pressure?

What is the resistance of the coffee filter paper? Later you pour the same height of coffee, at 80 °C, ($\eta = 0.333 \times 10^{-3}$ Pa.s) and collect 200 ml in 1 min. What is the resistance of the coffee grinds? $V_F = \frac{1}{A} \frac{dV}{dt}$ ΔP $V_F = \frac{\Delta P}{\eta (R_M + R_C)}$

Sometimes there are no solutions – need your own.

 $v_F = 1 \text{ dV} = 250 \text{ cm}^3 = 10 \text{ cm} = 1 \text{ cm} = \dots 10^3 \text{Pa}$ $A \text{ dt} 25 \text{ cm}^2 \text{ min min } 6 \text{ s} 10^{-3} \text{Pa.s} * \text{R}_{\text{M}}$ $R_{\text{M}} = 6 \text{ x10}^6 \text{ / cm}$, so when $v_{Fcoffee} = 0.1 \text{ cm/s} \&$ $\eta = 0.333 \text{ x10}^{-3} \text{Pa.s}$, $R_{\text{M}} + R_{\text{C}} = 30 \text{ x10}^6 \text{ / cm}$, $R_{\text{C}} = 27 \text{ x10}^6 \text{ / cm}$

Filtration – Incompressible Cake Incompressible cake causes:

a linear increase in resistance R_c with cake height

w is mass dry solids per filter area A $w = \frac{c V}{A}$ [kg/m2] where c is kg solids per volume V of suspension

The proportionality slope R_c / w is α - the <u>specific cake resistance</u> [m/kg]

^o w, dry mass solids per unit area $\frac{R_C + R_M}{A} \frac{dV}{dt} \Rightarrow \Delta P = \frac{\eta c \alpha}{A^2} V \frac{dV}{dt} + \frac{\eta R_M}{A} \frac{dV}{dt}$

Filtration – Incompr. Constant PressureIncompressible cakeConstant pressure filtration,

After subsituting in Darcy's law and integration,

$$\int_{0}^{t} dt = \frac{\eta c \alpha}{A^{2} \Delta P} \int_{0}^{V} V dV + \frac{\eta R_{M}}{A \Delta P} \int_{0}^{V} dV$$

this yields the **Linearized parabolic rate law**:

$$\frac{t}{V} = \frac{\eta c \alpha}{2 A^2 \Delta P} V + \frac{\eta R_M}{A \Delta P}$$

Graph <u>*t/V* vs. *V*</u> to get:

the specific cake α and filter medium resistance R_M .

A slurry is filtered with a laboratory leaf filter with a filtering surface area of 0.05 m², using a vacuum pressure difference of 0.7 bar. The slurry contains 5 vol% of solids (density 3000 kg/m³) Filtrate viscosity is 10⁻³ Pa.s (viscosity of water at room temp). The volume of filtrate collected in the first 5 min was 250 cm³ and, after a further 5 min, an additional 150 cm³ was collected. **Determine** the specific cake and cloth resistance.

A bit harder – but still ...

Try to define the quantities for the equation yourself

The brain is a hard thing to change. I'll guide you through this problem, do more yourself.

Filtration – Incompr. Constant Rate Incompressible cake Constant rate filtration, $\Delta P = \frac{\eta c \alpha}{A^2} V \frac{dV}{dt} + \frac{\eta R_M}{A} \frac{dV}{dt}$ subsituting in Darcv's law $\frac{dV}{dt} = \frac{V}{t} = \text{constant}$

yields the

Characteristic Plot: **∆P** vs V. Pressure change with time:

$$\Delta P = \left(\frac{\eta \, c \, \alpha}{A^2} \, \frac{V}{t}\right) V + \left(\frac{\eta \, R_M}{A} \, \frac{V}{t}\right)$$

slope and intercept from such a graph provide the specific cake α and filter medium resistance R_M .