Mass transfer and separation

Lecture 3



Recap fluid mixtures, colligative properties



The kinetic theory of gases

* To be able to extract quantitative information from a qualitative
model.

* Crucial for catalysis!

* According to the kinetic model a gas consists of MQs of negligible
sizes in ceaseless random motion and obeying the laws of classical
mechanics in their collisions.

* You need to be aware of Newton’s 2" law of motion, i.e. a=F/m

* Assumption: the only contribution to the energy of a gas is the kinetic
energy of MQs.



Objectives

* Describe the motion of all types of particles in all types of fluids
* Concentrate of transportation properties:

* Diffusion = migration of matter down a concentration gradient

* Thermal conduction = migration of energy down a temperature gradient

* Electrical conduction = migration of charge along a potential gradient

* Viscosity = migration of linear momentum down a velocity gradient




Kinetic Molecular Theory (KMT) of Gases

e A gas is composed of widely-separated MQs.

* MQs can be considered to be points; that is, they possess mass but have
negligible volume.

e Gas MQs are in constant random motion.

* Collisions among MQs are perfectly elastic.
* Elastic collision: when the total translational kinetic energy is conserved.

* The average kinetic energy of MQs is proportional to the temperature
of the gas in Kelvins.

KEX T



Pressure of gas according to the kinetic model

* When a particle of mass m is travelling with a component of velocity of v,
parallel to the x-axis collides with the wall and is reflected, its linear
momentum changes from mv, to —-mv,.

* The x-component of momentum changes by 2mv, on each collision (while
y and z are unchanged).

 Many MQs collide with the wall in a At interval; the total momentum
change, Ap¢orar = Ap; N, N=# of MQs that reach the wall in At.

* As a MQ with v, may travel v At distance, all MQs v,At away from the wall
will strike it.

* If the wall has an area of A, MQs in the Av,At volume will reach the wall.

* With number density of MQs of nN,/V, the # of MQs in this volume is
(nN,/V)Av At.

Figure 21-1
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Pressure of gas according to the kinetic model
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* At any instant %2 of MQs are moving towards the wall, another 72 away |~ _W_,_-f/’w

H . . . o on’t__ $ o e i
from it. Therefore, the average # of collisions with the wall 1/2nN,Av,At/V. i — =t
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* To find the force, we calculate itt"t =— ~, the rate of momentum change

Newton’s 2"d |aw: rate=F

nMvZ

; and as not all MQs travel with the same velocity, the
nM<vi>

pressure: p=F/A =

average (i.e. detected) pressure p = , similar to the perfect gas

equation of state.



Pressure and MQJar speeds

* For asingle MQ: v2 = v + v + v and as vgys = (V2)Y2 s0 Vs =

Ve =vi + vy +vg.
* As the MQs move randomly v = vj = v7 on average and SO Vfys =

3(v¢) and (vy) = URMS

e p =nM(vZ)/V ,subeq.pV = %nMv}%MS, for a perfect gas, where M=mN,.
* The vgs of MQs depends only on T as pV=constant (Boyle’s law). For it to

be an equation of state: pV=nRT.

3RT\1/2
* The RMS speed of MQs: Vs = (7) for a perfect gas.



Effect of T on MQlar speeds

3RT\“/?
VRMS = M

R = 8.314 J/(mol K)
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* Boltzmann distribution f(v)=Ke¥/KT> fraction of MQs with velocity components of v, v, and v, is
proportional to an exp. function of their kinetic energy

1 1 1 . . _ 2 2 2
¢ £ = Emv,? + 2mv§ + vazz , kinetic energy > f(v) = Ke ™ (Mvitmvy+mv)/2kT —

K @ —V3/2KT o—mv5/2KT 5 —mv3 /2KT

« The distribution factorises into f(v,) = K,e ™%/2KT etc.

* To determine the K, constant, recognise that a MQ must have a velocity component in the range

of -eo<y, <o, 50 fjooof(vx) dv, = 1.

1
2mkT\ 2
m ) '

N

* This is a Gaussian function (fooo e 9" dx = (g)

hsol=K, [ e ~MVx/2KT = Kx(

L
2
* Therefore, K, = (m/2nkT)Y? so f(v,) = ( ) o~ MVZ/2KT

10



Maxwell-Boltzmann distribution of speeds

* The probability of a MQ having a velocity in the range of v, to v,+dv,, v, to
v,+dv,, and v, to v,+dv, is: f(vx)f(vy)f(vz)dvxdvydvz =

3/2
m 12 192 1n1y2
(anT) e mvx/2kTe mvy/ZkTe mvz /2KT dvxdvy dUZ —

3/2
_m )Y e~V /2kT Q. du. dv,, since v2=v.2+v 24y 2
21TKT X=ry =Ty X Ty oz

* To evaluate the probability of a MQ having speed off v to v+dv regardless of
the direction, we consider the shell of the velocity space: f(v)dv =

3/2
m _ 2
Amv?dv (—anT) e ~MVv"/2KT

Surface v Thickness,

3/2
* f(v) =4n (_Z;T) p2e~mv*/2KT




Effect of Molecular Mass on MQJar Speeds

* The distribution of speeds of three different gases at the same
temperature

3RT\ /2
VrMSs = 7

Number of molecules

500 1000 1500 2000 2500
Molecular speed (m/s)

Heavy molecules are slow, light molecules are fast
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Features of the Maxwell —Boltzmann
distribution of speeds “

« Maxwell distribution for fraction (f) of
molecules with speeds from v to v+dv

Low temperature or
high molecular mass

Intermediate

temperature
or molecular
m \3/2 mass
f(w) =4n (anT) p2e=mv*/2KT
High
M \3/2
f(v) = 4n< ) 2 p—MV?/2RT temperature or
2RT low molecular

Mass

Relative numbers of molecules, f(v)

Speed, v

Figure 21-3
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Maxwell-Boltzmann distribution of speeds

3/2
* The f(v) = 4m (27Z2T) v2e~MV*/2RT fnction is called Maxwell-

Boltzmann distribution of speeds, we use the distribution to calculate
the average value of v2.

* Decaying exponential — very few high speed molecules
 M/2RT forces exp to zero for high molar mass molecules
 M/2RT keeps exp high for high temperatures

e vZexp - 0asv - 0: few slow molecules

 Remaining factors ensure that all speeds are normalised

14



3/2

Obtaining probability 0 = an ()" et

2nRT

* The Maxwell-Boltzmann distribution can be
used to evaluate the fraction of MQs in the
range of v, to v,

* to obtain this we integrate f(v) between v, and
14
vV, F(vy,v,) = fvlzf(v)dv

Relative number of molecules

15



Velocity selector

Detector
* The Maxwell-Boltzmann distribution has
been verified experimentally, MQlar S —— &
speeds can be measured directly with a
velocity selector.
* The spinning cylinder has channels that
permit the passage of only those MQs

with appropriate speed, their # is
determined by collection at detector.

Source

Figure 21-8
Atkins Physical



Mean values ) = an () e

2RT

* Once we have the Maxwell-Boltzmann distribution we can calculate the
mean value of any power of the speed by evaluating the appropriate

integral: (v") = fooo v™ f(v)dv.

3RT\1/2
* Integration with n=2 results in vpyc = (—) :

M
* Vams @ T2 and vgys a0 1/ M2

> T vy T and M vgped

e Sound waves are pressure waves and for them to propagate MQs of the gas
must move to form regions of high & low pressures.

Relative numbers of molecules, f(v)

Figure 213

- Vrys Of MQs should be comparable with the speed of sound (340 m s?)



Mean speed of MQs in a gas

* Calculate the speed, v,..,, of N, (M=28.02 g mol) MQs at 25 °C.

* Use Upean = fOOO vf (v)dv

3/2
e Reminder: f(v) = 4n (27Z2T) p2e~MV*/2RT
1

o (common integrals)

* Remember that fooox3e‘ax2dx =



Answer

°° 1
j x3e™a qyx = —
0 2a

3/2
_ M © 3 _ —MvZ2/2RT
B, = 47‘[( ) ve dv
mean 2TTRT fO

M \3/2 1 r2rT\1/2 8RT\ /2 §
vmean = 47 (5r) - 3(5r) = () =475 ms




Conclusion of the Maxwell-Boltzmann ™~

distribution
1/2
* Mean speed: Vyoqn = (%) , for a perfect gas
1/2
* Most probable speed: vy, = (%)

* Relative mean speed: v,..,; = 22y, ..., perfect gas,
identical MQs

* Relative speed of 2 dissimilar MQs of masses m, and
1/2
My: Vypp = (%) , Where u =

mampg

map+mpg

c* = (2RT/M)"?
¢ = (8RT/tM)"

c= (3RT/M)"?

(V) /4Ar(M/2rRT)"?

0 1 VI(2RTIM)"?
(4/m)"?  (3/2)"2

Figure 21-6



MQlar collisions

tkins Physical Chernist
2006 Peter Atkins a

Although the kinetic-MQlar theory assumes that MQs are point-like, we can count a ‘hit” whenever the
MQs’ centres come within a d distance from each other.

d is called the collision diameter, it is in the order of the actual diameter of MQs.

Consider MQs except 1 ‘frozen’, when the mobile MQ travels through the gas with v, (relative speed)
during At, it sweeps out a collision tube of cross section area o=nd? and length v, At, i.e. of volume
oV, At.

# of stationary MQs with centres inside the tube is given by the volume of the tube multiplied by the
number density (N=N/V) as Nov, At.

.. N nN nN
In terms of pressure this yields: A= o= —A4 = 4 P

V  nRT/p kT

21
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Collision frequency

* The collision frequency for a perfect gas is given as the number of hits
as a function of time, i.e. Nov, At/At: Z = 0V N

* At constant volume, z> with T

OVrelD
kT

» At constant temperature z o p (hnumber density > when pT")

* In terms of pressure (we have seen that N'= I\%): Z =

* The area o=rd? is called the collision cross-section of the MQs.

22



Molecular collisions

* ForaN, MQat 101 kPaand 25°Cv,..,,=475 m s
* Using 0=0.43 nm?, determine the collision frequency.

* Note that v, =21%v

OVrelD
kT

mean

e Use z =



Answer

1
oVrep _ (0.43%x10718m?2) (22475 m s~1)(1.01%10° Pa)

kT (1.381%1072%3] K—1)(298 K)
* So a given MQ collides ca. 7*¥10° times every second!

¢ 7 = =71%x10%s1




Mean free path

Vrel
yA

* From z we may calculate the mean free path: A = , for a perfect

gas, with a pressure dependence of A = i—;.
* Doubling the pressure decreases mean free path by half.
» Although T appears in eq. in a sample of constant V: p o T so T/p
remains constant. Therefore, the mean free path is independent of T

in a sample of gas in a contained of fixed V.
e Typically A = 70 nm for nitrogen at 1 atm
e v=500mstat 298 K

25



Mean free path

* What is the mean free path for N, MQs if v ...=475 m st at 25 °C,
and if z=7.1*10° st at 1.00 atm.




Answer

21/2

Z z 7.1x10%s~1

= 9.5 10"%m.



Collisions with walls and surfaces | & ¢

* Key result for accounting for transport in the gas phase is the rate at which MQs strike an z;féé.
* Consider a wall of area A, perpendicular to the x-axis.

* If a MQ has v, >0, it will strike the wall within At if it lies within a distance of v At from the wall.

* All MQs in the Av,At volume and with a +ve x component will strike it.

* The total # of collisions is NVAv,At. However, to take account of a range of velocities we must integrate: #

collisions= WAAt‘fOc>o v, f (vy) dv,.

* The collision flux is the # of collisions divided by the area and time interval: Z}, = Wfooo vy f (v,) dv,, and as

0o m \/2 .o —mv2/2k kT \1/2 _ © .2 1
fo Uxf (V) dvy = (ﬁ) fo v, e MWE2KT qy, = (—) (ConSIder:f0 xe ™ dx = o common

- 2mm
integrals)

kT \1/2 .
s Ly = W(%) , then substitute N=p/kT.
. .. ] . D
The collision flux: Zy, = K for a perfect gas.

28



Effusion

* la gas with p & T separated from vacuum by a small hole; the rate of

escape of MQs equals the rate at which they strike the hole.
PAo N\ °

* For the A, area: Rate of effusion= Z,,4¢ = G 72 e =\
* As M=mN,, this is inversely proportional to M2, . ; =\

29



Effusion

* Empirical observations summarised by Graham’s law of effusion,
stating that the rate of effusion a 1/M%/2,

1/2
8RT . .
* Aswe've seen Uy, pqn = (—) , SO will be the rate through which

_ ™M
MQs strike a hole.




Calculating vapour pressure from mass loss

e Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a container and
heated at 500 K. When a hole of diameter 0.50 mm was opened in
the container for 100 s, a mass loss of 385 mg was measured.

 Calculate the vapour pressure of liquid caesium at 500 K. Note, this is
called the Knudsen method.
p
(ankT)l/Z)

* Use Am = Z,ApymAt (Z,, — collision flux Zy, =



Answer

* Pyap IS CONstant inside the container despite the hole as the hot liquid

replenished the vapour phase. The rate of effusion is therefore also
constant.

pAgmAt  pAyml/2At
(2mmkT)Y/2 — (2mkT)1/2 "
‘p = (anT)l/ 2 Am (ZnRT)l/ 2 Am

Aght  \ M At

¢ Am —_ ZwAOmAt —_

=8.7*%103 kgms2 (Pa)

m



Transport properties of gases

* Plays an important role in the atmosphere; kinetic theory extended to
extract quantitative expressions

A MQ carries properties through space for the distance of its mean
free path.

* Describe the motion of all types of particles in all types of fluids

33



Phenomenological equations

* Transport properties are commonly expressed in terms of
‘ohenomenological equations’.

* They are empirical summaries of experimental observations, without
(initially) being based on the understanding of MQlar processes
responsible for the property.

* Net rate of transport of a property is measured by its flux, J, the
guantity of that property passing through a given area in a given time
interval (property/(area*duration)).

* |f matter is flowing (cf. diffusion) - matter flux (#MQs/m?s), if it’s
energy (cf. thermal conduction) - energy flux (J/m?s).

34



Fick’s 15t law of diffusion

* Experiments show that J a 15t derivative of some
other related property.

* J(matter) « Ocll—gzv,ﬂ\f- # density of particles per unit V.

* Proportionality of J(matter) to concentration is given
by Fick’s first law of diffusion;

* If the concentration gradient varies steeply with position,
then diffusion will be fast.

* There is no net flux is the concentration is uniform

* Similarly rate of thermal conduction a temperature
gradient; J(energy of thermal motion) « %.

-

Figure 21-10
Atkins Physical Chemistry, Eighth Edition
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Phenomenological parameters: mass and heat

e +ve J: flux towards +ve z and vice versa.

* As matter flows from high concentration towards low, J is \\
dN. . : . X
+ve when —Wls —ve, thus the coefficient of proportionality T~

dz
must be —ve.

» Diffusion coefficient; J(matter) = —D —. [D]=m2s1

 Similarly, energy of thermal motion (heat) migrates high T
towards |OW; J(energy of thermal motion) = —Kﬂ, thermal

dz
conductivity [JK*m™ or WK-1m]



Phenomenological parameters: momentum

To see connection btw J(momentum) & viscosity — consider a Newtonian

(laminar) flow; a series of layers moving past each other

linearly w distance, z.

* If the entering layer has high linear momentum, it accelerates the layer

* |If the entering layer has low linear momentum, it retards the layer

x-component in the z-direction

* flux of x-component a dv,/dz as there is no net flux when all layers move w the

same V.

¢ Viscosity: J(x — component of momentum) = —n

dvy.
dz’

The layer next to the wall — stationary, velocity of successive layers varies

As retarding effect depends on transfer of the x-component of linear
momentum into the layer of interest, the viscosity depends on the flux of

[kgms?, or Pa s]

Bring high
X-momentum
Bring low !
'y X-momentum

Figure 21-11
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula
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Energy flux

e Suppose a T difference of 10 K between 2 metal plates separated by
1.0 cm.

* What is the energy flux for k=0.024 J K1 m1?
* How much energy would be transferred between the two plates in

1 h ? Synoptic table 21.2* Transport
properties of gases at 1 atm

kK/(JKTm1st)  n/(uP)t

. dT
* J(energy of thermal motion) = —k — ks 7K 293K
dZ Ar 0.0163 210 293
CO, 0.0145 136 147
He  0.1442 187 196
N,  0.0240 166 176

* More values are given in the Data sect'?g.
F1uP=10"7kgm™' s



Answer

* The temperature gradient is dT7/dz=- 10K/(1.0*10? m)=-1.0*103 K m!
* The energy flux in air is:
J(energy of thermal motion)=-(0.024 J Kt m* s1)*(-1.0*10° K m)=
+24 J m? st

* As aresult, in 1.0 h (3600 s) the transfer of energy through an area of
the opposite walls of 1.0 cm? is:

» Transfer=(24 ) m2 s1)*(1.01*10* m?2)*(3600 s)=8.6 J



Transport parameters

travelled ca. A (mean free path) since their last collision.

Number density, A\

On average, MQs passing through A area at z=0 have

Mz) — evaluated at z=-A; using Taylor expansion truncated after 2"d term;

d d
M=2) = MO)—A (d—”zv)o and M) = MO)+A (d_jz\%
Average # of impact on the imaginary window of A, during At interval is Z,, A At.

. kT \Y/2%2 1
Z,, — collision flux, or Zy;, = W(%) = Zwvmean-

1
Zy\f(_}\)vmeanAoAt

So the left to right flux: J(L - R) = - = iﬂ\/(—l)vmean
0

From right to left: J(L « R) = iw()\)vmean

40



Diffusion coefficient

* The net flux from left to right thereforeis: /|, = J(L > R) —

J(L «R) = ivmean{w(_k) — MA)} = ivmean {[W(O) — }\(%V)O] —

41



Diffusion coefficient

* A(N,)=95 nm at 1.0 bar, their v ...=475 ms™* at 25 °C.
 What is their diffusion coefficient?

1
D = ngmean

42



Answer

e D=1/3*%(9.5*10® m)*475 m s1=1.5*10> m? sL.



Physical interpretation of diffusion coefficient

* AL when p (A=kT/op) > DI, w p T, i.e. gas MQs diffuse slowly.
e v with TP (v .. =(8kT/mm)/2), i.e. MQs in a hot sample diffuse
faster than in a cool sample.

* As AT when the collision cross-section of the MQs\, (A=kT/op) > D is
greater for smaller MQs.

44



Summary: Fick’s law of diffusion

* Transfer of material is caused by a non-uniform distribution of
concentration

® = —CD —_— Dry Air
Ja dy -
g
* c[kmol m=3]: molar density =
£
3
?__Ié 0
i
7



Thermal conductivity (reminder) )

* According to equipartition theorem, each MQ carried an average energy e=vkT, where v is a number of the
order of 1. For atoms, v=3/2.

« When a MQ passes through the imaginary window, it transports that average energy. We assume uniform &
and a T gradient.

* MQs arriving from the left travel a A from their last collision in a hotter region, and so with higher energy.
MQs also arrive from the right after travelling a A from a cooler region.

* The 2 opposing energy fluxes are: J(L - R) = iﬂ\fvmeans(—l) and J(L « R) = ij\fvmeane(l), with Z,,;

* Thenetfluxis:/, =J(L > R)—J(L < R) = %vmeanw{e(—)\) —eM)} = ivmeanW{[e(O) — }\(%)O] —

46



Thermal conductivity (reminder) )

1 .
°* K = gvvmeanM\/k, thermal conductivity.

. N :
* [dentifying thatj\f=% = [J]N,4, where [J] — molar concentration of J,
and noting that vkN, — molar constant-volume heat capacity of a

perfect gas (C, ,=N,(6&/6T),), we get k = %vmeank[/] Cy m.

* Recognising that v=p/kTand using D = —}\ Vroagn: K = ”?D
* As Aal/p (A=kT/op) and Nap (N=p/kT) > Ka(A*p) is independent on

p.
 k greater for gases with high heat capacity.

47



Summary: Fourier’s law of heat conduction =

e Heat will be transferred from the hot to the cold surface
and this phenomenon is known as the conduction of heat .

* QuA (Tl(STZ), where 6 — thickness of plate
Ces g . _Q_ _ar
If 6 — infinitesimally small: g = A= kg,

* Q[W]: rate of heat transfer, g[Wm~2]: heat flux

'\“‘a\l“‘

%

RN

48



A
% Fast
layer

Slow

Laminar flow

 MQs travelling from a fast layer to a slow layer transport a
momentum of mv, (A) to their new layer at z=0; those travelling the

other way transport mv,(-A).

* Assuming a uniform density, Z,, = %vaean.
* Momentum of MQs arriving from the right: mv,.(A) = mv,(0) + mA (%) , and
0

from the left: mv, (—A) = mv,(0) — mA (%) .
0

1

* The net flux of x-momentum s /, = vaeanwumvx(o) - }‘(%) ] B
0



Viscosity :

* Similar considerations to diffusion can be made to obtain: n =

1 . .
3 Vmean NMN, viscosity.

* Using mN,=M and D = %7\ Vmean, W€ get n=MD[J] or n=pMD/RT.

* AsA a 1/p (A=kT/op) and [J] a p, it follows that n a A%is independent of p.

 Because v .., o T2 (v .. =(8kT/mtm)¥?), n a T2, i.e. n of a gas I with T
* At high T MQs travel quicker so the flux is greater.

* By contrast, the n of liquids {, when T because of intermolecular interactions,
which we neglect in a perfect gas.



Summary: Newton'’s law of viscosity

* T =1, = R¢/A, where t,— shear stress at the wall, R; — drag force or
frictional drag

dv .
*T=-7 E; T — shear stress; y —distance from wall; A — surface of plate

 Fluids are classified into 2 groups: Newtonian fluids , which obey Newton’s
law of viscosity, and non-Newtonian fluids, which do not obey Newton’s law.

 Common fluids such as air, water, and oils generally behave as Newtonian
fluids, whereas polymer solutions usually behave as non-Newtonian fluids.

R IN] o
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Viscosity

* D=1.5*10" m?s! for N, at 25 °C.

* Calculate the viscosity of N, at 1.0 bar taking into account that
M=28.02 g mol-.

1

*n = gvmean}\mw



Answer

Jm3
~ (1.0x10°Pa)x(28.02x1073 kg mol~1)x(1.5x107> m?s~1)
= (8.314 JK~1mol~1)x(298 K)
1.7 x 10> kgm~1s71




Motion in liquids

* Liquids are central to industrial chemical reactions and it is crucial to
know how the mobility of MQs and solutes in them carries with the

conditions.

* lonic motion is a way of exploring this motion as forces to move them
can be applied electrically. From electrical measurements the
properties of diffusing neutral MQs may also be inferred.

* lons reach a terminal velocity when electrical force on them is
balanced by the drag due to the viscosity of the solvent (I with T1").

2 aspects of motion in liquids will be considered, pure liquids and
solutes.



Pure liquids

* Relaxation time measurements in NMR and EPR — mobilities of MQs, cf.
rotation of large vs small MQs (5° steps vs jumps between different states,

respectively);

* |nelastic neutron scattering — motion of particles, internal dynamics of
macromolecules;
dv,

* Viscosity - J,(x — component of momentum) = —n—= o v
able 20.4* Viscosities of liquids at

* Unlike in a gas, for MQs to move in a liquid they 298K
must acquire a minimum energy (activation energy)
to escape from its neighbours

e 1 = nyefa/RT temperature dependence of n. e m

* Note +ve sign in exponent as n a (mobility)™ . -
* N with TT! Water 0.891

n/(10° kgm™"s71)

Benzene 0.601

* More values are given in the Data section.
" The viscosity of water corresponds to 0.891 cP.



Pure liquids

* One issue is related to the change of density on
temperature change.

* Temperature dependence of a liquid when the density
is constant (i.e. dV=0) is much less than at constant
pressure.

* Intermolecular interactions govern the magnitude of E..

* Calculating E, is very complex problem and still
unsolved.

* For example, at low T, n(H,0)J, with pI* - thisisin line
with the rupture of H-bonds.

~

Viscosity, n/(10° kg m~' s™)

N

-
(o]

-
N

0.8

0.4

0

0

20

40 60 80
Temperature, 6/°C

100



Liquid viscosity

* n(H,0) at 25 °C and 50 °C is 0.890 mPa s and 0.547 mPa s,
respectively.

* Calculate the activation energy for molecular migration.

* 1 = ngele/RT

57



Answer

0T _ Ea/RG: —%) _ RInfn(Ty/n(ry) _ (8314 K mot™ ) In(Ged)

(T ’ % _% 32; K_29:;K -
1.56 x 10* Jmol~1 ©




Electrolyte solutions

e By studying the net transport of charged species through solution —
ions may be dragged through the solvent by the application of a
potential difference between two electrodes immersed in the sample.

* Through understanding the series of events occurring for charged
species it is possible to extrapolate some conclusions for species that
are neutral.



Conductivity

* Fundamental measurement to study the motion of ions is the electrical
resistance, R, of the solution [R]=Q.

* The conductance, G, the inverse of resistance; [G]=Q or S (Siemens).

. '(I'E)e conductance of a sample |, w its length (/) and I w its cross-sectional area

* Electrical conductance, the constant kin G = kA/I; [k]=Sm™.
* Conductivity depends on the # of ions present;

* Molar conductivity, A = k/c, c — molar concentration of the electrolyte. [A ] =S
m? mol*?
» strong electrolyte, an electrolyte with a molar conductivity that varies only slightly with
concentration.

* weak electrolyte, an electrolyte with a molar conductivity that is normal at concentrations
close to zero, but falls sharply to low values as the concentration increases.



Conductivity

e Kohlrausch’s law, for the concentration dependence of the molar
con/ductlwty of a strong electrolyte at low concentration, A, =A_

e K, the Kohlrausch constant depends on the identity of the solute.

* [imiting molar conductivity, A °, the molar conductivity at zero
concentration, is the sum of contrlbutlons from its individual ions.

* law of the independent migration of ions, A_°=v,A, + v_A_

* where A, & A_: limiting molar conductivity of cations and anions,
respectively, v, & v_: # of cations and anions per formula unit of
electrolyte (v, = v_=1 for HCI, CuSO,, v, = 1 and v_= 2 for MgCl,).



Mobility of ions

* To interpret conductivity measurements we need to know

* why ions move at different rates,
* why they have different molar conductivities, and

* why the molar conductivities of strong electrolytes decrease with the sqrt of the
molar concentration.

* Though the motion of an ion remains largely random, the presence of an
electric field biases its motion, and the ion undergoes net migration

through the solution.

* When the potential difference between the two planar electrodes a
distance [ apart is A, the iorhscpin the solution between them experience a

uniform electric field of E = -

zelA®

* In such a field an ion of charge ze experiences a force of F = zeE = —




Table 21.6 lonic mobilities in water at 298 K, u/(10 8 m2s- V)

Cations Anions
Y 4 Ca?* 6::: i;co; 2:2:
Stokes’ law “m e
o o  memg  wa
Na* 5.19 [Fe(CN)G]“‘ 1.4
A cation responds to the application of the field L-:}w 3132 oy ZZ:EZ
by acceleration to the —ve, an anion by an acceleration =
to the +Ve EIECtrOde. Tal:ea::PrincipallyTable21.4andu=,{/zF.

* As the spherical ion of a radius moves through the solvent it experiences a
frictional retarding force, F;. ., a s, speed.

* F...is given by Stokes’ law: F;, .=fs, where f=6nna.

* The 2 forces act in opposite directions and the ions reach a terminal speed,
zeE

the drift speed: s = —.

7
e s a strength of applied field; s=uE, where u = Zf—e ==

: mobility of ion.
61NQ
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lon mobility

* For an order of magnitude estimate we can take z=1 and a as the
radius of an ion such as Cs*, which is 170 pm.

* Calculate the mobility of Cs* if the viscosity of its solution is n=1.0 cP
(1.0 mPa)




Answer

Jvi
ze 1.6x101° C _ 1 —
sy = = - —— =5.0x10"8m?y~1s7!
6TINQa 6TTX(1.0X10° Pa s)X(170x10~14m)

Jm3

* This value means that when there is a potential difference of 1V
across a solution of length 1 cm (so E=100 V m), the drift speed is
typically about 5 um s™. That speeds seems slow but not on the

MQlar scale where it corresponds to an ion passing about 104 solvent
MQs per second.



Hydrodynamic radius

* As the drift speed governs the rate at which charged species are transported,
conductivity should decrease with viscosity and ion size.

 This is true for bulky ions but not for small ones, where u* from Li* to Cs* even though
ionic radius 1T°.

* This contradiction may be resolved by understanding a in Stokes’ law as the
hydrodynamic radius, which takes into account all the H,O MQs it carries in its hydration
shell.

* Small ions give rise to stronger electric fields than large ones so small ions are more extensively
solvated.

* H* though small has a very high mobility. According to the Grotthuss mechanism.
there is an effective motion of a proton that involves the rearrangement j\ ~ 2
of the protons in a group of water MQs. Q' Q°'Q°'Q

i i

© °0 0G0



Mobility and conductivity

* jonic conductivity, the contribution of ions of one type to the molar conductivity:

A= ZUF, < molar conc. of each type of ion=vc
Where F=9648*1O4 CmOI-l, # density =vcN,
the Faraday constant. # ofionsin sAtA =vcN,sAtA
. N ,sAtA
Anions J(ions) _ VeV, satA =vcN,s

Area, A AtA
J(charge) = J(ions)x ze = ze xvcN s = zvesF —=*— zvcuEF

/

I_A_¢_ GA = KAA P Potential difference by Ohm’s law
R I G =kA/l

5 K= ZVeUF —20=X¢ sy fve =1 = zuF

Applies for cations &
A =v A +v A =(v,zu +v zu )F anionsso solution isin the

’ o 1/2 = - . . limit at O concentration
* Kohlrausch’s law, A, = A _° =K c'/* ion—ion interactions .




lonic conductivity

* The typical ionic mobility may be estimated as 5.0*10% m?V-1s.

* If z=1 for both the cation and the anion, what would the typical
limiting molar conductivity be?

* A=zuF
* F=9.648*10* Cmol!



Answer

Jv1
* A = zuF=(5.0*10° m?V-1s1)*(9.648*10* Cmol)=
4.8%103 m?V-1s'Cmol*?



lon-1on interactions

* relaxation effect: the reduction of an ion’s mobility due to distortion of the ionic
atmosphere.

 electrophoretic effect: the enhanced viscous drag due to the counter current of
oppositely charged ions.

* Debye—Huckel-Onsager theory: a theory of the concentration dependence of the
molar conductivity of a strong electrolyte, K= A + BA_°.

0

A_=A_°—Kcl/?

RELAXATION EFFECTS OR ASYMMETRY moom _
EFFECTS N é_m
"' N < ectric Fie £
e O o e f, :
. = 80
N Y XA L :
@

in Force and

‘ Electrostatic A LaCl,
Force .
° ‘ rdation Force
® | N N
(b)
a
(a) ZnSO,
Symmetricalionic atmosphere lonicatmosphere becoming .
around itive i

apositiveion asymmetrical when central ion moves 0 0.1 0.2 61,3 70 0.4

2

(A




lon channel

e passive transport: the tendency for a species to move spontaneously down a concentration or
potential gradient.

 active transport: transport that must be driven by an exergonic process.
e channel former: a protein that creates a hydrophilic pore in a membrane.

* jon channel: a protein that effects the movement of a specific ion down a potential gradient.

* jon pump: proteins that effect the active transport of ions. 0.3 nm
<_
* patch clamp technique: for studying ion transport across biological membranes.
Power supply \
and current Patch
measuring electrode 1.2 nm
device
X
Micropipette
K* channel
Intracellular
electrode lon 2.2 nm
Cytosol channel '
Cell
\ Y—=— [1.0n

patch clamp technique



Einstein relations

* An important relation between s an%l’ghe thermodynamic force, F,

acting on any kind of particleis s = —

* An ion in solution has s=uE, in the presence of an electric field of
strength E, and experiences a F=N,zeE.

* Using N,e=F we get uE=DFzE/RT, so u = %, Einstein relation.
Z°DF?

e A=zuF = , for each type of ion.

F2
e From A% =v. A +vi A% = (v,z2D, + U_ZED_)E, Nernst-

Einstein equation.



Einstein relations

» u=ez/f and u=zDe/kT relate the mobility in a frictional force and to the
diffusion coefficient, respectively.

* Combined: D = E, Stokes-Einstein equation

f

e Using Stokes’ law: D = “T

6mna’
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Mobility and diffusion

* u(S0,%)=8.29*10° m2Vv-is,
 Determine the diffusion coefficient at 25 °C.

e u=zDe/kT
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Answer

e D=uRT/zF=(8.29*108 m2V-1s1)*(8.3145 JK-mol1)*(298
K)/{2*(9.649*10% C mol1)}

Jvi



Any questions?



