Mass transfer and separation

Lecture 3

Recap fluid mixtures, colligative properties

The kinetic theory of gases

- To be able to extract quantitative information from a qualitative model.
- Crucial for catalysis!
- According to the kinetic model a gas consists of MQs of negligible sizes in ceaseless random motion and obeying the laws of classical mechanics in their collisions.
- You need to be aware of Newton's 2^{nd} law of motion, i.e. a=F/m
- Assumption: the only contribution to the energy of a gas is the kinetic energy of MQs.

- Describe the motion of all types of particles in all types of fluids
- Concentrate of transportation properties:
 - <u>Diffusion</u> ≡ migration of matter down a concentration gradient
 - <u>Thermal conduction</u> = migration of energy down a temperature gradient
 - <u>Electrical conduction</u> \equiv migration of charge along a potential gradient
 - <u>Viscosity</u> ≡ migration of linear momentum down a velocity gradient

Kinetic Molecular Theory (KMT) of Gases

- A gas is composed of widely-separated MQs.
 - MQs can be considered to be points; that is, they possess mass but have negligible volume.
- Gas MQs are in constant random motion.
- Collisions among MQs are perfectly elastic.
 - Elastic collision: when the total translational kinetic energy is conserved.
- The average kinetic energy of MQs is proportional to the temperature of the gas in Kelvins.

$\mathrm{KE} \propto T$

Pressure of gas according to the kinetic model

- When a particle of mass *m* is travelling with a component of velocity of v_x parallel to the *x*-axis collides with the wall and is reflected, its linear momentum changes from mv_x to $-mv_x$.
- The x-component of momentum changes by 2mv_x on each collision (while y and z are unchanged).
- Many MQs collide with the wall in a Δt interval; the total momentum change, $\Delta p_{total} = \Delta p_i N$, N=# of MQs that reach the wall in Δt .
- As a MQ with v_x may travel $v_x \Delta t$ distance, all MQs $v_x \Delta t$ away from the wall will strike it.
- If the wall has an area of A, MQs in the $Av_x\Delta t$ volume will reach the wall.
- With number density of MQs of nN_A/V , the # of MQs in this volume is $(nN_A/V)Av_x\Delta t$.

Pressure of gas according to the kinetic model

• At any instant ½ of MQs are moving towards the wall, another ½ away from it. Therefore, the average # of collisions with the wall $1/2nN_AAv_x\Delta t/V$.

•
$$\Delta p_{tot} = \frac{nN_A A v_x \Delta t}{2V} \times 2mv_x = \frac{nmN_A A v_x^2 \Delta t}{V} = \frac{nMA v_x^2 \Delta t}{V}$$

- To find the force, we calculate $\frac{\Delta p_{tot}}{\Delta t} = \frac{nMAv_{\chi}^2}{V}$, the rate of momentum change
- Newton's 2nd law: rate=F
- pressure: $p=F/A = \frac{nMv_x^2}{V}$; and as not all MQs travel with the same velocity, the average (*i.e.* detected) pressure $p = \frac{nM < v_x^2 >}{V}$, similar to the perfect gas equation of state.

Pressure and MQlar speeds

- For a single MQ: $v^2 = v_x^2 + v_y^2 + v_z^2$ and as $v_{RMS} = \langle v^2 \rangle^{1/2}$ so $v_{RMS}^2 = v_x^2 + v_y^2 + v_z^2$.
- As the MQs move randomly $v_x^2 = v_y^2 = v_z^2$ on average and so $v_{RMS}^2 = 3\langle v_x^2 \rangle$ and $\langle v_x^2 \rangle = \frac{1}{3}v_{RMS}^2$
- $p = nM\langle v_x^2 \rangle/V$, sub eq. $pV = \frac{1}{3}nMv_{RMS}^2$, for a perfect gas, where $M=mN_A$.
- The v_{RMS} of MQs depends only on T as pV=constant (Boyle's law). For it to be an equation of state: pV=nRT.

• The RMS speed of MQs:
$$v_{RMS} = \left(\frac{3RT}{M}\right)^{1/2}$$
 for a perfect gas.

Effect of T on MQlar speeds

Hot molecules are *fast*, cold molecules are *slow*.

Maxwell-Boltzmann distribution of speeds

- Boltzmann distribution $f(v)=Ke^{-\varepsilon/kT} \rightarrow$ fraction of MQs with velocity components of v_x , v_y and v_z is proportional to an exp. function of their kinetic energy
- $\varepsilon = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2$, kinetic energy $\rightarrow f(v) = Ke^{-(mv_x^2 + mv_y^2 + mv_z^2)/2kT} = Ke^{-mv_x^2/2kT}e^{-mv_y^2/2kT}e^{-mv_z^2/2kT}$.
- The distribution factorises into $f(v_x) = K_x e^{-mv_x^2/2kT}$, etc.
- To determine the K_x constant, recognise that a MQ must have a velocity component in the range of $-\infty < v_x < \infty$, so $\int_{-\infty}^{\infty} f(v_x) dv_x = 1$.
- This is a Gaussian function $\left(\int_{0}^{\infty} e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{\frac{1}{2}}\right)$, so $1 = K_{\chi} \int_{-\infty}^{\infty} e^{-mv_{\chi}^2/2kT} dv_{\chi} = K_{\chi} \left(\frac{2\pi kT}{m}\right)^{\frac{1}{2}}$.

• Therefore,
$$K_{\chi} = (m/2\pi kT)^{1/2}$$
 so $f(v_{\chi}) = \left(\frac{m}{2\pi kT}\right)^{1/2} e^{-mv_{\chi}^2/2kT}$

Maxwell-Boltzmann distribution of speeds

- The probability of a MQ having a velocity in the range of v_x to $v_x + dv_x$, v_y to $v_y + dv_y$, and v_z to $v_z + dv_z$ is: $f(v_x)f(v_y)f(v_z)dv_xdv_ydv_z = \left(\frac{m}{2\pi kT}\right)^{3/2}e^{-mv_x^2/2kT}e^{-mv_y^2/2kT}e^{-mv_z^2/2kT}dv_xdv_ydv_z = \left(\frac{m}{2\pi kT}\right)^{3/2}e^{-mv^2/2kT}dv_xdv_ydv_z$, since $v^2 = v_x^2 + v_y^2 + v_z^2$
- To evaluate the probability of a MQ having speed off v to v+dv regardless of the direction, we consider the shell of the velocity space: f(v)dv =

$$4\pi v^2 dv \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT}$$

• $f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$

Effect of Molecular Mass on MQlar Speeds

• The distribution of speeds of three different gases at the same temperature

$$v_{RMS} = \left(\frac{3RT}{M}\right)^{1/2}$$

Heavy molecules are *slow*, light molecules are *fast*

Features of the Maxwell –Boltzmann distribution of speeds

• Maxwell distribution for fraction (*f*) of molecules with speeds from *v* to *v*+d*v*

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

$$f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{2/2} v^2 e^{-Mv^2/2RT}$$

f(v)Low temperature or of molecules, high molecular mass Intermediate temperature or molecular numbers mass High temperature or Relative low molecular mass Speed, v

Figure 21-3 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

Maxwell-Boltzmann distribution of speeds

- The $f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$ function is called Maxwell-Boltzmann distribution of speeds, we use the distribution to calculate the average value of v^2 .
- Decaying exponential very few high speed molecules
- M/2RT forces exp to zero for high molar mass molecules
- M/2RT keeps exp high for high temperatures
- $v^2 \exp \rightarrow 0$ as $v \rightarrow 0$: few slow molecules
- Remaining factors ensure that all speeds are normalised

Obtaining probability

- The Maxwell-Boltzmann distribution can be used to evaluate the fraction of MQs in the range of v_1 to v_2
- to obtain this we integrate f(v) between v_1 and v_2 $F(v_1, v_2) = \int_{v_1}^{v_2} f(v) dv$

$$f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$$

Velocity selector

- The Maxwell-Boltzmann distribution has been verified experimentally, MQlar speeds can be measured directly with a velocity selector.
- The spinning cylinder has channels that permit the passage of only those MQs with appropriate speed, their # is determined by collection at detector.

Figure 21-8 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

Mean values

- $f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$
- Once we have the Maxwell-Boltzmann distribution we can calculate the mean value of any power of the speed by evaluating the appropriate integral: $\langle v^n \rangle = \int_0^\infty v^n f(v) dv$.
- Integration with *n*=2 results in $v_{RMS} = \left(\frac{3RT}{M}\right)^{1/2}$.
- $v_{\rm RMS} \alpha T^{1/2}$ and $v_{\rm RMS} \alpha 1/M^{1/2}$
- \rightarrow T \uparrow $v_{\rm RMS}$ \uparrow and M \uparrow $v_{\rm RMS}$ \downarrow
- Sound waves are pressure waves and for them to propagate MQs of the gas must move to form regions of high & low pressures.
- $\rightarrow v_{\text{RMS}}$ of MQs should be comparable with the speed of sound (340 m s⁻¹)

Mean speed of MQs in a gas

- Calculate the speed, v_{mean} , of N₂ (*M*=28.02 g mol⁻¹) MQs at 25 °C.
- Use $v_{mean} = \int_0^\infty v f(v) dv$

• Reminder:
$$f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$$

• Remember that $\int_0^\infty x^3 e^{-ax^2} dx = \frac{1}{2a^2}$ (common integrals)

Answer

$$\int_0^\infty x^3 e^{-ax^2} \mathrm{d}x = \frac{1}{2a^2}$$

•
$$v_{mean} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \int_0^\infty v^3 e^{-Mv^2/2RT} dv$$

• $v_{mean} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \frac{1}{2} \left(\frac{2RT}{M}\right)^{1/2} = \left(\frac{8RT}{\pi M}\right)^{1/2} = 475 \text{ m s}^{-1}$

Conclusion of the Maxwell-Boltzmann distribution

• Mean speed:
$$v_{mean} = \left(\frac{8RT}{\pi M}\right)^{1/2}$$
, for a perfect gas

- Most probable speed: $v_{mp} = \left(\frac{2RT}{\pi M}\right)^{1/2}$
- Relative mean speed: $v_{rel} = 2^{1/2} v_{mean}$, perfect gas, identical MQs
- Relative speed of 2 dissimilar MQs of masses m_A and $m_B: v_{rel} = \left(\frac{8kT}{\pi\mu}\right)^{1/2}$, where $\mu = \frac{m_A m_B}{m_A + m_B}$

MQlar collisions

- Although the kinetic-MQlar theory assumes that MQs are point-like, we can count a 'hit' whenever the MQs' centres come within a *d* distance from each other.
- *d* is called the collision diameter, it is in the order of the actual diameter of MQs.
- Consider MQs except 1 'frozen', when the mobile MQ travels through the gas with v_{rel} (relative speed) during Δt , it sweeps out a collision tube of cross section area $\sigma = \pi d^2$ and length $v_{rel}\Delta t$, *i.e.* of volume $\sigma v_{rel}\Delta t$.
- # of stationary MQs with centres inside the tube is given by the volume of the tube multiplied by the number density ($\mathcal{N}=N/V$) as $\mathcal{N}\sigma v_{rel}\Delta t$.
- In terms of pressure this yields: $\mathcal{N} = \frac{N}{V} = \frac{nN_A}{V} = \frac{nN_A}{nRT/p} = \frac{p}{kT}$

Collision frequency

- The collision frequency for a perfect gas is given as the number of hits as a function of time, i.e. $N\sigma v_{rel} \Delta t / \Delta t$: $z = \sigma v_{rel} N$
- At constant volume, $z \uparrow$ with $T \uparrow$
- In terms of pressure (we have seen that $\mathcal{N} = \frac{p}{kT}$): $z = \frac{\sigma v_{rel} p}{kT}$
- At constant temperature $z \alpha p$ (number density \uparrow when $p\uparrow$)
- The area $\sigma = \pi d^2$ is called the collision cross-section of the MQs.

Molecular collisions

- For a N₂ MQ at 101 kPa and 25 °C v_{mean} =475 m s⁻¹.
- Using σ =0.43 nm², determine the collision frequency.

- Note that $v_{rel} = 2^{1/2} v_{mean}$
- Use $z = \frac{\sigma v_{rel} p}{kT}$

Answer

•
$$z = \frac{\sigma v_{rel} p}{kT} = \frac{(0.43 \times 10^{-18} m^2)(2^{\frac{1}{2}} \times 475 \ m \ s^{-1})(1.01 \times 10^5 \ Pa)}{(1.381 \times 10^{-23} J \ K^{-1})(298 \ K)} = 7.1 \times 10^9 \ s^{-1}$$

• So a given MQ collides *ca*. 7*10⁹ times every second!

Mean free path

- From z we may calculate the mean free path: $\lambda = \frac{v_{rel}}{z}$, for a perfect gas, with a pressure dependence of $\lambda = \frac{kT}{\sigma p}$.
- Doubling the pressure decreases mean free path by half.
- Although T appears in eq. in a sample of constant V: p α T so T/p remains constant. Therefore, the mean free path is independent of T in a sample of gas in a contained of fixed V.
- Typically $\lambda \approx 70$ nm for nitrogen at 1 atm
- *v* ≈ 500 m s⁻¹ at 298 K

Mean free path

 What is the mean free path for N₂ MQs if v_{mean}=475 m s⁻¹ at 25 °C, and if z=7.1*10⁹ s⁻¹ at 1.00 atm.

•
$$v_{rel} = 2^{1/2} v_{mean}$$

• $\lambda = \frac{v_{rel}}{z}$

Answer

•
$$\lambda = \frac{v_{rel}}{z} = \frac{2^{1/2}v_{mean}}{z} = \frac{2^{1/2}*475 \, m \, s^{-1}}{7.1*10^9 s^{-1}} = 9.5 * 10^{-8} m.$$

Collisions with walls and surfaces

- $\frac{|v_x\Delta t|}{Won't}$ $\frac{Will}{Volume} = |v_x\Delta t|A$
- Key result for accounting for transport in the gas phase is the rate at which MQs strike an area.
- Consider a wall of area A, perpendicular to the x-axis.
- If a MQ has $v_x > 0$, it will strike the wall within Δt if it lies within a distance of $v_x \Delta t$ from the wall.
- All MQs in the $Av_x\Delta t$ volume and with a +ve x component will strike it.
- The total # of collisions is $\mathcal{N}Av_x\Delta t$. However, to take account of a range of velocities we must integrate: # collisions= $\mathcal{N}A\Delta t \int_0^\infty v_x f(v_x) dv_x$.
- The collision flux is the # of collisions divided by the area and time interval: $Z_W = \mathcal{N} \int_0^\infty v_x f(v_x) \, \mathrm{d}v_x$, and as $\int_0^\infty v_x f(v_x) \, \mathrm{d}v_x = \left(\frac{m}{2\pi kT}\right)^{1/2} \int_0^\infty v_x \, e^{-mv_x^2/2kT} \, \mathrm{d}v_x = \left(\frac{kT}{2\pi m}\right)^{1/2}$ (Consider: $\int_0^\infty x e^{-ax^2} \, \mathrm{d}x = \frac{1}{2a}$, common integrals)
- $Z_W = \mathcal{N}\left(\frac{kT}{2\pi m}\right)^{1/2}$, then substitute $\mathcal{N}=p/kT$.
- The collision flux: $Z_W = \frac{p}{(2\pi m kT)^{1/2}}$, for a perfect gas.

Effusion

- !a gas with p & T separated from vacuum by a small hole; the rate of escape of MQs equals the rate at which they strike the hole.
- For the A_0 area: Rate of effusion = $Z_W A_0 = \frac{pA_0}{(2\pi mkT)^{1/2}}$.
- As $M=mN_A$, this is inversely proportional to $M^{1/2}$.

Effusion

- Empirical observations summarised by Graham's law of effusion, stating that the rate of effusion $\alpha \ 1/M^{1/2}$.
- As we've seen $v_{mean} = \left(\frac{8RT}{\pi M}\right)^{1/2}$, so will be the rate through which MQs strike a hole.

Two balloons are filled to the same volume, one with nitrogen and one with helium.

After 48 hours, the helium-filled balloon is smaller than the nitrogen-filled one because helium escapes faster than nitrogen. 30

Calculating vapour pressure from mass loss

- Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a container and heated at 500 K. When a hole of diameter 0.50 mm was opened in the container for 100 s, a mass loss of 385 mg was measured.
- Calculate the vapour pressure of liquid caesium at 500 K. Note, this is called the *Knudsen method*.

• Use
$$\Delta m = Z_W A_0 m \Delta t \ (Z_W - \text{collision flux } Z_W = \frac{p}{(2\pi m kT)^{1/2}})$$

Answer

• p_{vap} is constant inside the container despite the hole as the hot liquid replenished the vapour phase. The rate of effusion is therefore also constant.

•
$$\Delta m = Z_W A_0 m \Delta t = \frac{p A_0 m \Delta t}{(2\pi m kT)^{1/2}} = \frac{p A_0 m^{1/2} \Delta t}{(2\pi kT)^{1/2}}.$$

• $p = \left(\frac{2\pi kT}{m}\right)^{1/2} \frac{\Delta m}{A_0 \Delta t} = \left(\frac{2\pi RT}{M}\right)^{1/2} \frac{\Delta m}{A_0 \Delta t} = 8.7*10^3 \text{ kgm}^{-1}\text{s}^{-2}$ (Pa)

Transport properties of gases

- Plays an important role in the atmosphere; kinetic theory extended to extract quantitative expressions
- A MQ carries properties through space for the distance of its mean free path.
- Describe the motion of all types of particles in all types of fluids

Phenomenological equations

- Transport properties are commonly expressed in terms of 'phenomenological equations'.
- They are empirical summaries of experimental observations, without (initially) being based on the understanding of MQlar processes responsible for the property.
- Net rate of transport of a property is measured by its flux, J, the quantity of that property passing through a given area in a given time interval (property/(area*duration)).
- If matter is flowing (*cf.* diffusion) → matter flux (#MQs/m²s), if it's energy (*cf.* thermal conduction) → energy flux (J/m²s).

Fick's 1st law of diffusion

- Experiments show that $J \propto 1^{st}$ derivative of some other related property.
 - $J(matter) \propto \frac{d\mathcal{N}}{dz}$, \mathcal{N} # density of particles per unit V.
- Proportionality of J(matter) to concentration is given by Fick's first law of diffusion;
 - If the concentration gradient varies steeply with position, then diffusion will be fast.
- There is no net flux is the concentration is uniform
- Similarly rate of thermal conduction α temperature gradient; $J(energy \ of \ thermal \ motion) \propto \frac{dT}{dz}$.

Figure 21-10 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

Phenomenological parameters: mass and heat

- +ve J : flux towards +ve z and vice versa.
- As matter flows from high concentration towards low, J is +ve when $\frac{d\mathcal{N}}{dz}$ is -ve, thus the coefficient of proportionality must be -ve.
- Diffusion coefficient; $J(matter) = -D \frac{d\mathcal{N}}{dz}$. [D]=m²s⁻¹
- Similarly, energy of thermal motion (heat) migrates high T towards low; $J(energy of thermal motion) = -\kappa \frac{dT}{dz}$, thermal conductivity [JK⁻¹m⁻¹ or WK⁻¹m⁻¹]

Figure 21-10 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula
Phenomenological parameters: momentum

- To see connection btw J(momentum) & viscosity consider a Newtonian (laminar) flow; a series of layers moving past each other
- The layer next to the wall stationary, velocity of successive layers varies linearly w distance, z.
 - If the entering layer has high linear momentum, it accelerates the layer
 - If the entering layer has low linear momentum, it retards the layer
- As retarding effect depends on transfer of the *x*-component of linear momentum into the layer of interest, the viscosity depends on the flux of *x*-component in the *z*-direction
 - flux of *x*-component $\alpha dv_x/dz$ as there is no net flux when all layers move w the same *v*.
- Viscosity: $J(x component of momentum) = -\eta \frac{dv_x}{dz}$; [kgm⁻¹s⁻¹, or Pa s]

Figure 21-11 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

Energy flux

- Suppose a T difference of 10 K between 2 metal plates separated by 1.0 cm.
- What is the energy flux for κ =0.024 J K⁻¹ m⁻¹?
- How much energy would be transferred between the two plates in 1h?
 Synoptic table 21.2* Transferred

• J(energy of thermal motion) = $-\kappa \frac{dT}{dz}$

Synoptic table 21.2* Transport properties of gases at 1 atm

	$\kappa/(J \text{ K}^{-1} \text{ m}^{-1} \text{ s}^{-1})$	$\eta/(\mu P)^{\dagger}$		
	273 K	273 K	293 K	
Ar	0.0163	210	223	
CO_2	0.0145	136	147	
He	0.1442	187	196	
N ₂	0.0240	166	176	

* More values are given in the *Data section*. † 1 μ P = 10⁻⁷ kg m⁻¹ s⁻¹.

Answer

- The temperature gradient is $dT/dz = -10K/(1.0*10^{-2} m) = -1.0*10^{3} K m^{-1}$
- The energy flux in air is: *J*(energy of thermal motion)=-(0.024 J K⁻¹ m⁻¹ s⁻¹)*(-1.0*10³ K m⁻¹)=

+24 J m⁻² s⁻¹

- As a result, in 1.0 h (3600 s) the transfer of energy through an area of the opposite walls of 1.0 cm² is:
- Transfer= $(24 \text{ Jm}^{-2} \text{ s}^{-1})^*(1.01^*10^{-4} \text{ m}^2)^*(3600 \text{ s})=8.6 \text{ J}$

Transport parameters

- On average, MQs passing through A area at z=0 have travelled *ca*. λ (mean free path) since their last collision.
- $\mathcal{M}(z)$ evaluated at $z=-\lambda$; using Taylor expansion truncated after 2nd term;

•
$$\mathcal{N}(-\lambda) = \mathcal{N}(0) - \lambda \left(\frac{d\mathcal{N}}{dz}\right)_0$$
 and $\mathcal{N}(\lambda) = \mathcal{N}(0) + \lambda \left(\frac{d\mathcal{N}}{dz}\right)_0$

• Average # of impact on the imaginary window of A_0 during Δt interval is $Z_W A_0 \Delta t$.

•
$$Z_W$$
 – collision flux, or $Z_W = \mathcal{N}\left(\frac{kT}{2\pi m}\right)^{1/2} = \frac{1}{4}\mathcal{N}\mathcal{V}_{mean}$.

- So the left to right flux: $J(L \to R) = \frac{\frac{1}{4}\mathcal{N}(-\lambda)v_{mean}A_0\Delta t}{A_0\Delta t} = \frac{1}{4}\mathcal{N}(-\lambda)v_{mean}$
- From right to left: $J(L \leftarrow R) = \frac{1}{4} \mathcal{N}(\lambda) v_{mean}$

Diffusion coefficient

• The net flux from left to right therefore is: $J_Z = J(L \to R) - J(L \leftarrow R) = \frac{1}{4} v_{mean} \{ \mathcal{N}(-\lambda) - \mathcal{N}(\lambda) \} = \frac{1}{4} v_{mean} \left\{ \left[\mathcal{N}(0) - \lambda \left(\frac{d\mathcal{N}}{dz} \right)_0 \right] - \frac{1}{4} v_{mean} \left\{ \left[\mathcal{N}(0) - \lambda \left(\frac{d\mathcal{N}}{dz} \right)_0 \right] - \frac{1}{4} v_{mean} \left\{ \mathcal{N}(0) - \lambda \left(\frac{d\mathcal{N}}{dz} \right)_0 \right\} \right\} \right\}$

Diffusion coefficient

- $\lambda(N_2)$ =95 nm at 1.0 bar, their v_{mean} =475 ms⁻¹ at 25 °C.
- What is their diffusion coefficient?

•
$$D = \frac{1}{3}\lambda v_{mean}$$

Answer

• D=1/3*(9.5*10⁻⁸ m)*475 m s⁻¹=1.5*10⁻⁵ m² s⁻¹.

Physical interpretation of diffusion coefficient

- $\lambda \downarrow$ when $p \uparrow (\lambda = kT/\sigma p) \rightarrow D \downarrow w p \uparrow$, *i.e.* gas MQs diffuse slowly.
- $v_{\text{mean}} \uparrow \text{with } T \uparrow (v_{\text{mean}} = (8kT/\pi m)^{1/2})$, *i.e.* MQs in a hot sample diffuse faster than in a cool sample.
- As $\lambda \uparrow$ when the collision cross-section of the MQs \downarrow ($\lambda = kT/\sigma p$) $\rightarrow D$ is greater for smaller MQs.

Summary: Fick's law of diffusion

• Transfer of material is caused by a non-uniform distribution of concentration

•
$$J_A = -cD \frac{dx_A}{dy}$$

• c[kmol m⁻³]: molar density

Thermal conductivity (reminder)

- According to equipartition theorem, each MQ carried an average energy ε=vkT, where v is a number of the order of 1. For atoms, v=3/2.
- When a MQ passes through the imaginary window, it transports that average energy. We assume uniform \mathcal{N} and a T gradient.
- MQs arriving from the left travel a λ from their last collision in a hotter region, and so with higher energy.
 MQs also arrive from the right after travelling a λ from a cooler region.
- The 2 opposing energy fluxes are: $J(L \to R) = \frac{1}{4} \mathcal{N} v_{mean} \varepsilon(-\lambda)$ and $J(L \leftarrow R) = \frac{1}{4} \mathcal{N} v_{mean} \varepsilon(\lambda)$, with Z_W
- The net flux is : $J_Z = J(L \to R) J(L \leftarrow R) = \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(-\lambda) \varepsilon(\lambda)\} = \frac{1}{4}v_{mean}\mathcal{N}\{\left[\varepsilon(0) \lambda\left(\frac{d\varepsilon}{dz}\right)_0\right] \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(-\lambda) \varepsilon(\lambda)\} = \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(0) \lambda\left(\frac{d\varepsilon}{dz}\right)_0\right] \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(-\lambda) \varepsilon(\lambda)\} = \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(0) \lambda\left(\frac{d\varepsilon}{dz}\right)_0\right] \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(0) \lambda\left(\frac{d\varepsilon}{dz}\right)_0\right] = \frac{1}{4}v_{mean}\mathcal{N}\{\varepsilon(0) \lambda\left(\frac{d\varepsilon}{dz}\right)_0\right]$

Thermal conductivity (reminder)

- $\kappa = \frac{1}{3} v v_{mean} \lambda \mathcal{N} k$, thermal conductivity.
- Identifying that $\mathcal{N}=\frac{nN_A}{V}=[J]N_A$, where [J] molar concentration of J, and noting that vkN_A – molar constant-volume heat capacity of a perfect gas $(C_{V,m}=N_A(\delta \varepsilon / \delta T)_V)$, we get $\kappa = \frac{1}{3}v_{mean}\lambda[J]C_{V,m}$.
- Recognising that $\mathcal{N}=p/kT$ and using $D=\frac{1}{3}\lambda v_{mean}$: $\kappa=\frac{vpD}{T}$.
- As $\lambda \alpha 1/p \ (\lambda = kT/\sigma p)$ and $\mathcal{N} \alpha p \ (\mathcal{N} = p/kT) \rightarrow \kappa \alpha (\lambda * p)$ is independent on p.
- *κ* greater for gases with high heat capacity.

Summary: Fourier's law of heat conduction

 Heat will be transferred from the hot to the cold surface and this phenomenon is known as the conduction of heat.

•
$$Q\alpha A \frac{(T_1 T_2)}{\delta}$$
, where δ – thickness of plate

• If
$$\delta$$
 – infinitesimally small: $q = \frac{Q}{A} = -\kappa \frac{dT}{dy}$

• Q[W]: rate of heat transfer, q[Wm⁻²]: heat flux

Laminar flow

• MQs travelling from a fast layer to a slow layer transport a momentum of $mv_x(\lambda)$ to their new layer at z=0; those travelling the other way transport $mv_x(-\lambda)$.

• Assuming a uniform density,
$$Z_W = \frac{1}{4} \mathcal{N} v_{mean}$$
.

- Momentum of MQs arriving from the right: $mv_{\chi}(\lambda) = mv_{\chi}(0) + m\lambda \left(\frac{dv_{\chi}}{dz}\right)_{0}$, and from the left: $mv_{\chi}(-\lambda) = mv_{\chi}(0) m\lambda \left(\frac{dv_{\chi}}{dz}\right)_{0}$.
- The net flux of *x*-momentum is $J_z = \frac{1}{4} v_{mean} \mathcal{N}\left\{\left[mv_x(0) \lambda\left(\frac{dv_x}{dz}\right)_0\right] \right\}$

Viscosity

- Similar considerations to diffusion can be made to obtain: $\eta = \frac{1}{3}v_{mean}\lambda m\mathcal{N}$, viscosity.
- Using $mN_A = M$ and $D = \frac{1}{3}\lambda v_{mean}$, we get $\eta = MD[J]$ or $\eta = pMD/RT$.
- As $\lambda \propto 1/p (\lambda = kT/\sigma p)$ and [J] αp , it follows that $\eta \propto \lambda \mathcal{N}$ is independent of p.
- Because $v_{\text{mean}} \propto T^{1/2} (v_{\text{mean}} = (8kT/\pi m)^{1/2}), \eta \propto T^{1/2}, i.e. \eta \text{ of a gas } \uparrow \text{ with } T \uparrow$.
 - At high *T* MQs travel quicker so the flux is greater.
 - By contrast, the η of liquids \downarrow when $T\uparrow$ because of intermolecular interactions, which we neglect in a perfect gas.

Summary: Newton's law of viscosity

- $\tau = \tau_w = R_f/A$, where τ_w shear stress at the wall, R_f drag force or frictional drag
- $\tau = -\eta \frac{dv}{dy}$; τ shear stress; y –distance from wall; A surface of plate
 - Fluids are classified into 2 groups: Newtonian fluids , which obey Newton's law of viscosity, and non-Newtonian fluids, which do not obey Newton's law.
 - Common fluids such as air, water, and oils generally behave as Newtonian fluids, whereas polymer solutions usually behave as non-Newtonian fluids.

Viscosity

- $D=1.5*10^{-5} \text{ m}^2\text{s}^{-1} \text{ for N}_2 \text{ at } 25 \text{ °C}.$
- Calculate the viscosity of N₂ at 1.0 bar taking into account that M=28.02 g mol⁻¹.

•
$$\eta = \frac{1}{3} v_{mean} \lambda m \mathcal{N}$$

Answer

• $\eta = \frac{(1.0 \times 10^5 Pa) \times (28.02 \times 10^{-3} \ kg \ mol^{-1}) \times (1.5 \times 10^{-5} \ m^2 s^{-1})}{(8.314 \ JK^{-1} mol^{-1}) \times (298 \ K)} = 1.7 \times 10^{-5} \ kg \ m^{-1} s^{-1}$

Motion in liquids

- Liquids are central to industrial chemical reactions and it is crucial to know how the mobility of MQs and solutes in them carries with the conditions.
- Ionic motion is a way of exploring this motion as forces to move them can be applied electrically. From electrical measurements the properties of diffusing neutral MQs may also be inferred.
- Ions reach a terminal velocity when electrical force on them is balanced by the drag due to the viscosity of the solvent (个 with T个).
- 2 aspects of motion in liquids will be considered, pure liquids and solutes.

Pure liquids

- Relaxation time measurements in NMR and EPR mobilities of MQs, cf. rotation of large vs small MQs (5° steps vs jumps between different states, respectively);
- Inelastic neutron scattering motion of particles, internal dynamics of macromolecules;
- Viscosity $J_z(x component \ of \ momentum) = -\eta \frac{dv_x}{dz}$
- Unlike in a gas, for MQs to move in a liquid they must acquire a minimum energy (activation energy) to escape from its neighbours
- $\eta = \eta_0 e^{E_a/RT}$, temperature dependence of η .
 - Note +ve sign in exponent as $\eta \alpha$ (mobility)⁻¹
 - $\eta \downarrow$ with $T\uparrow$!

 Table 20.4* Viscosities of liquids at 298 K

 $\eta/(10^{-3} \text{ kg m}^{-1} \text{ s}^{-1})$

 Benzene
 0.601

 Mercury
 1.55

 Pentane
 0.224

 Water[†]
 0.891

* More values are given in the *Data section*.

[†] The viscosity of water corresponds to 0.891 cP.

Pure liquids

- One issue is related to the change of density on temperature change.
- Temperature dependence of a liquid when the density is constant (*i.e.* dV=0) is much less than at constant pressure.
- Intermolecular interactions govern the magnitude of E_{a} .
- Calculating E_a is very complex problem and still unsolved.
- For example, at low T, $\eta(H_2O) \downarrow$ with $p \uparrow$ this is in line with the rupture of H-bonds.

Liquid viscosity

- $\eta(H_2O)$ at 25 °C and 50 °C is 0.890 mPa s and 0.547 mPa s, respectively.
- Calculate the activation energy for molecular migration.

•
$$\eta = \eta_0 e^{E_a/RT}$$

Answer

•
$$\frac{\eta(T_2)}{\eta(T_1)} = e^{E_a/R(\frac{1}{T_2} - \frac{1}{T_1})} = \frac{R \ln\{\eta(T_2)/\eta(T_1)\}}{\frac{1}{T_2} - \frac{1}{T_1}} = \frac{(8.314 \, JK^{-1}mol^{-1}) \ln(\frac{0.547}{0.890})}{\frac{1}{323 \, K} - \frac{1}{298 \, K}} = 1.56 \times 10^4 \, Jmol^{-1}$$

Electrolyte solutions

- By studying the net transport of charged species through solution ions may be dragged through the solvent by the application of a potential difference between two electrodes immersed in the sample.
- Through understanding the series of events occurring for charged species it is possible to extrapolate some conclusions for species that are neutral.

Conductivity

- Fundamental measurement to study the motion of ions is the electrical resistance, R, of the solution [R]= Ω .
- The conductance, G, the inverse of resistance; $[G]=\Omega^{-1}$ or S (Siemens).
- The conductance of a sample $\downarrow \psi$ wits length (/) and $\uparrow \psi$ its cross-sectional area (A).
- Electrical conductance, the constant κ in $G = \kappa A/I$; $[\kappa] = Sm^{-1}$.
- Conductivity depends on the # of ions present;
- Molar conductivity, $\Lambda_m = \kappa/c$, c molar concentration of the electrolyte. $[\Lambda_m] = S m^2 mol^{-1}$
 - *strong electrolyte,* an electrolyte with a molar conductivity that varies only slightly with concentration.
 - *weak electrolyte*, an electrolyte with a molar conductivity that is normal at concentrations close to zero, but falls sharply to low values as the concentration increases.

Conductivity

- Kohlrausch's law, for the concentration dependence of the molar conductivity of a strong electrolyte at low concentration, $\Lambda_m = \Lambda_m^\circ \mathcal{K}c^{1/2}$.
- *K*, the Kohlrausch constant depends on the identity of the solute.
- limiting molar conductivity, Λ_m° , the molar conductivity at zero concentration, is the sum of contributions from its individual ions.
- law of the independent migration of ions, $\Lambda_m^\circ = v_+\lambda_+ + v_-\lambda_-$
- where λ₊ & λ₋: limiting molar conductivity of cations and anions, respectively, v₊ & v₋: # of cations and anions per formula unit of electrolyte (v₊ = v₋ = 1 for HCl, CuSO₄, v₊ = 1 and v₋ = 2 for MgCl₂).

Mobility of ions

- To interpret conductivity measurements we need to know
 - why ions move at different rates,
 - why they have different molar conductivities, and
 - why the molar conductivities of strong electrolytes decrease with the sqrt of the molar concentration.
- Though the motion of an ion remains largely random, the presence of an electric field biases its motion, and the ion undergoes net migration through the solution.
- When the potential difference between the two planar electrodes a distance *l* apart is $\Delta \varphi$, the ions in the solution between them experience a uniform electric field of $E = \frac{\Delta \varphi}{l}$.
- In such a field an ion of charge *ze* experiences a force of $F = zeE = \frac{ze\Delta \varphi}{r}$.

Cations		Anions	
Ag⁺	6.24	Br⁻	8.09
Ca ²⁺	6.17	CH ₃ CO ₂ [−]	4.24
Cu ²⁺	5.56	CI⁻	7.91
H+	36.23	CO ₃ ²⁻	7.46
K ⁺	7.62	F⁻	5.70
Li+	4.01	[Fe(CN) ₆] ³⁻	10.5
Na ⁺	5.19	[Fe(CN) ₆] ⁴⁻	11.4
NH ₄ ⁺	7.63	I-	7.96
[N(CH ₃) ₄] ⁺	4.65	NO ₃	7.40
Rb ⁺	7.92	OH⁻	20.64
Zn ²⁺	5.47	SO ₄ ²⁻	8.29

Data: Principally Table 21.4 and $u = \lambda/zF$.

 Table 21-6

 Atkins Physical Chemistry, Eighth Edition

 © 2006 Peter Atkins and Julio de Paula

Stokes' law

- A cation responds to the application of the field by acceleration to the –ve, an anion by an acceleration to the +ve electrode.
- As the spherical ion of *a* radius moves through the solvent it experiences a frictional retarding force, F_{fric} , α s, speed.
- F_{fric} is given by Stokes' law: $F_{\text{fric}}=fs$, where $f=6\pi\eta a$.
- The 2 forces act in opposite directions and the ions reach a terminal speed, the drift speed: $s = \frac{zeE}{f}$.
- *s* α strength of applied field; *s*=*uE*, where $u = \frac{ze}{f} = \frac{ze}{6\pi\eta a}$: mobility of ion.

Ion mobility

- For an order of magnitude estimate we can take z=1 and a as the radius of an ion such as Cs⁺, which is 170 pm.
- Calculate the mobility of Cs⁺ if the viscosity of its solution is η =1.0 cP (1.0 mPa)

•
$$u = \frac{ze}{f} = \frac{ze}{6\pi\eta a}$$

• $u = \frac{ze}{6\pi\eta a} = \frac{1.6 \times 10^{19} \text{ C}}{6\pi \times (1.0 \times 10^3 \text{ Pa s}) \times (170 \times 10^{-12} m)} = 5.0 \times 10^{-8} m^2 V^{-1} s^{-1}$

Answer

This value means that when there is a potential difference of 1 V across a solution of length 1 cm (so E=100 V m⁻¹), the drift speed is typically about 5 μm s⁻¹. That speeds seems slow but not on the MQlar scale where it corresponds to an ion passing about 10⁴ solvent MQs per second.

Hydrodynamic radius

- As the drift speed governs the rate at which charged species are transported, conductivity should decrease with viscosity and ion size.
- This is true for bulky ions but not for small ones, where u个 from Li⁺ to Cs⁺ even though ionic radius 个.
- This contradiction may be resolved by understanding *a* in Stokes' law as the hydrodynamic radius, which takes into account all the H₂O MQs it carries in its hydration shell.
 - Small ions give rise to stronger electric fields than large ones so small ions are more extensively solvated.
- H⁺ though small has a very high mobility. According to the Grotthuss mechanism.
 there is an effective motion of a proton that involves the rearrangement of the protons in a group of water MQs.

Mobility and conductivity

• **ionic conductivity,** the contribution of ions of one type to the molar conductivity: $\lambda = zuF$,

where F=9.648*10⁴ Cmol⁻¹,

the Faraday constant.

molar conc. of each type of ion = vc# density = vcN_{A} # of ions in $s\Delta tA = vcN_A s\Delta tA$ $J(ions) = \frac{vcN_A s\Delta tA}{\Delta tA} = vcN_A s$ $J(charge) = J(ions) \times ze = ze \times vcN_{a}s = zvcsF \xrightarrow{s=u\mathcal{E}} zvcu\mathcal{E}F$ $I = JA = zvcu \mathcal{E}FA \xrightarrow{\mathcal{E} = \Delta\phi/I} \frac{zvcuFA\Delta\phi}{I}$ Potential difference by Ohm's law $I = \frac{\Delta \phi}{R} = G \Delta \phi = \frac{\kappa A \Delta \phi}{I}$ $G = \kappa A/I$ $\therefore \kappa = zvcuF \xrightarrow{\Lambda_m = \kappa/c} \kappa/vc = \lambda = zuF$ Applies for cations & $\Lambda_m^0 = \mathbf{v}_+ \lambda_+ + \mathbf{v}_- \lambda_- = (\mathbf{v}_+ \mathbf{z}_+ \mathbf{u}_+ + \mathbf{v}_- \mathbf{z}_- \mathbf{u}_-)\mathbf{F}$ anions so solution is in the limit at 0 concentration

• Kohlrausch's law, $\Lambda_m = \Lambda_m^{\circ} - \mathcal{K}c^{1/2}$ ion—ion interactions

Ionic conductivity

- The typical ionic mobility may be estimated as 5.0*10⁻⁸ m²V⁻¹s⁻¹.
- If *z*=1 for both the cation and the anion, what would the typical limiting molar conductivity be?

- $\lambda = z u F$
- F=9.648*10⁴ Cmol⁻¹

Answer

JV^{-1} • $\lambda = zuF = (5.0*10^{-8} \text{ m}^2 \text{V}^{-1} \text{s}^{-1})*(9.648*10^4 \text{ Cmol}^{-1}) = 4.8*10^{-3} \text{ m}^2 \text{V}^{-1} \text{s}^{-1} \text{Cmol}^{-1}$

Ion-ion interactions

- relaxation effect: the reduction of an ion's mobility due to distortion of the ionic atmosphere.
- electrophoretic effect: the enhanced viscous drag due to the counter current of oppositely charged ions.
- Debye–Hückel–Onsager theory: a theory of the concentration dependence of the molar conductivity of a strong electrolyte, $K = A + BA_m^\circ$.

Ion channel

- passive transport: the tendency for a species to move spontaneously down a concentration or potential gradient.
- active transport: transport that must be driven by an exergonic process.
- channel former: a protein that creates a hydrophilic pore in a membrane.
- ion channel: a protein that effects the movement of a specific ion down a potential gradient.
- ion pump: proteins that effect the active transport of ions.

• patch clamp technique: for studying ion transport across biological membranes.

0.3 nm

Einstein relations

- between *s* and the thermodynamic for
- An important relation between s and the thermodynamic force, F, acting on any kind of particle is $s = \frac{DF}{RT}$.
- An ion in solution has s=uE, in the presence of an electric field of strength E, and experiences a F=N_AzeE.
- Using $N_A e = F$ we get uE = DFzE/RT, so $u = \frac{zDF}{RT}$, Einstein relation.

•
$$\lambda = zuF = \frac{z^2 DF^2}{RT}$$
, for each type of ion.

• From $\Lambda_m^0 = v_+ \lambda_+ + v_- \lambda_ \Lambda_m^0 = (v_+ z_+^2 D_+ + v_- z_-^2 D_-) \frac{F^2}{RT}$, Nernst-Einstein equation.
Einstein relations

- *u=ez/f* and *u=zDe/kT* relate the mobility in a frictional force and to the diffusion coefficient, respectively.
- Combined: $D = \frac{kT}{f}$, Stokes-Einstein equation

• Using Stokes' law:
$$D = \frac{kT}{6\pi\eta a}$$

Mobility and diffusion

- $u(SO_4^{2-})=8.29*10^{-8} \text{ m}^2\text{V}^{-1}\text{s}^{-1}$.
- Determine the diffusion coefficient at 25 °C.

• *u=zDe/kT*

Answer

D=uRT/zF=(8.29*10⁻⁸ m²V⁻¹s⁻¹)*(8.3145 JK⁻¹mol⁻¹)*(298 K)/{2*(9.649*10⁴ C mol⁻¹)}

J V⁻¹

Any questions?