Mass transfer and separation

Lecture 3

Recap fluid mixtures, colligative properties

The kinetic theory of gases

- To be able to extract quantitative information from a qualitative model.
- Crucial for catalysis!
- According to the kinetic model a gas consists of MQs of negligible sizes in ceaseless random motion and obeying the laws of classical mechanics in their collisions.
- You need to be aware of Newton's $2^{\text {nd }}$ law of motion, i.e. $a=F / m$
- Assumption: the only contribution to the energy of a gas is the kinetic energy of MQs.

Objectives

- Describe the motion of all types of particles in all types of fluids
- Concentrate of transportation properties:
- Diffusion \equiv migration of matter down a concentration gradient
- Thermal conduction \equiv migration of energy down a temperature gradient
- Electrical conduction \equiv migration of charge along a potential gradient
- Viscosity \equiv migration of linear momentum down a velocity gradient

Kinetic Molecular Theory (KMT) of Gases

- A gas is composed of widely-separated MQs.
- MQs can be considered to be points; that is, they possess mass but have negligible volume.
- Gas MQs are in constant random motion.
- Collisions among MQs are perfectly elastic.
- Elastic collision: when the total translational kinetic energy is conserved.
- The average kinetic energy of MQs is proportional to the temperature of the gas in Kelvins.

$$
K E \propto T
$$

Pressure of gas according to the kinetic model

- When a particle of mass m is travelling with a component of velocity of v_{x} parallel to the x-axis collides with the wall and is reflected, its linear momentum changes from $m v_{x}$ to $-m v_{x}$.
- The x-component of momentum changes by $2 m v_{x}$ on each collision (while

Pressure of gas according to the kinetic model

- At any instant $1 / 2$ of MQs are moving towards the wall, another $1 / 2$ away from it. Therefore, the average \# of collisions with the wall $1 / 2 n N_{A} A v_{x} \Delta t / V$.
- $\Delta p_{t o t}=\frac{n N_{A} A v_{x} \Delta t}{2 V} \times 2 m v_{x}=\frac{n m N_{A} A v_{x}^{2} \Delta t}{V}=\frac{n M A v_{x}^{2} \Delta t}{V}$

- To find the force, we calculate $\frac{\Delta p_{t o t}}{\Delta t}=\frac{n M A v_{x}^{2}}{V}$, the rate of momentum change
- Newton's $2^{\text {nd }}$ law: rate $=F$
- pressure: $p=F / \mathrm{A}=\frac{n M v_{x}^{2}}{V}$; and as not all MQs travel with the same velocity, the average (i.e. detected) pressure $p=\frac{n M\left\langle v_{x}^{2}\right\rangle}{V}$, similar to the perfect gas equation of state.

Pressure and MQlar speeds

- For a single MQ: $v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$ and as $v_{R M S}=\left\langle v^{2}\right\rangle^{1 / 2}$ so $v_{R M S}^{2}=$ $v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$.
- As the MQs move randomly $v_{x}^{2}=v_{y}^{2}=v_{z}^{2}$ on average and so $v_{R M S}^{2}=$ $3\left\langle v_{x}^{2}\right\rangle$ and $\left\langle v_{x}^{2}\right\rangle=\frac{1}{3} v_{R M S}^{2}$
- $p=n M\left\langle v_{x}^{2}\right\rangle / V$, sub eq. $p V=\frac{1}{3} n M v_{R M S}^{2}$, for a perfect gas, where $M=m N_{A}$.
- The $v_{\text {RMS }}$ of MQs depends only on T as $p V=$ constant (Boyle's law). For it to be an equation of state: $p V=n R T$.
- The RMS speed of MQs: $v_{R M S}=\left(\frac{3 R T}{M}\right)^{1 / 2}$ for a perfect gas.

Effect of T on MQlar speeds

$$
\begin{array}{r}
v_{R M S}=\left(\frac{3 R T}{M}\right)^{1 / 2} \\
R=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{~K})
\end{array}
$$

Hot molecules are fast, cold molecules are slow.

Maxwell-Boltzmann distribution of speeds

- Boltzmann distribution $f(v)=K e^{-\varepsilon / k T} \rightarrow$ fraction of MQs with velocity components of v_{x}, v_{y} and v_{z} is proportional to an exp. function of their kinetic energy
- $\varepsilon=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} m v_{z}^{2}$, kinetic energy $\rightarrow f(v)=K e^{-\left(m v_{x}^{2}+m v_{y}^{2}+m v_{z}^{2}\right) / 2 k T}=$ $K e^{-m v_{x}^{2} / 2 k T} e^{-m v_{y}^{2} / 2 k T} e^{-m v_{Z}^{2} / 2 k T}$.
- The distribution factorises into $f\left(v_{x}\right)=K_{x} e^{-m v_{x}^{2} / 2 k T}$, etc.
- To determine the K_{x} constant, recognise that a MQ must have a velocity component in the range of $-\infty<v_{\mathrm{x}}<\infty$, so $\int_{-\infty}^{\infty} f\left(v_{x}\right) \mathrm{d} v_{x}=1$.
- This is a Gaussian function $\left(\int_{0}^{\infty} e^{-a x^{2}} \mathrm{~d} x=\frac{1}{2}\left(\frac{\pi}{a}\right)^{\frac{1}{2}}\right)$, so $1=K_{x} \int_{-\infty}^{\infty} e^{-m v_{x}^{2} / 2 k T} \mathrm{~d} v_{x}=K_{x}\left(\frac{2 \pi k T}{m}\right)^{\frac{1}{2}}$.
- Therefore, $K_{x}=(m / 2 \pi k T)^{1 / 2}$ so $f\left(v_{x}\right)=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m v_{x}^{2} / 2 k T}$

Maxwell-Boltzmann distribution of speeds

- The probability of a MQ having a velocity in the range of v_{x} to $v_{\mathrm{x}}+\mathrm{d} v_{\mathrm{x}}, v_{\mathrm{y}}$ to $v_{y}+\mathrm{d} v_{v_{y}}$ and v_{z} to $v_{z}+\mathrm{d} v_{z}$ is: $f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) \mathrm{d} v_{x} \mathrm{~d} v_{y} \mathrm{~d} v_{z}=$

$$
\begin{aligned}
& \left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v_{x}^{2} / 2 k T} e^{-m v_{y}^{2} / 2 k T} e^{-m v_{z}^{2} / 2 k T} \mathrm{~d} v_{x} \mathrm{~d} v_{y} \mathrm{~d} v_{z}= \\
& \left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T} \mathrm{~d} v_{x} \mathrm{~d} v_{y} \mathrm{~d} v_{z}, \text { since } v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}
\end{aligned}
$$

- To evaluate the probability of a MQ having speed off v to $v+d v$ regardless of the direction, we consider the shell of the velocity space: $f(v) \mathrm{d} v=$ $4 \pi v^{2} \mathrm{~d} v\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T}$
- $f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T}$.

Effect of Molecular Mass on MQlar Speeds

- The distribution of speeds of three different gases at the same temperature

Heavy molecules are slow, light molecules are fast

Features of the Maxwell -Boltzmann

 distribution of speeds- Maxwell distribution for fraction (f) of molecules with speeds from v to $v+d v$

Maxwell-Boltzmann distribution of speeds

- The $f(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}$ function is called MaxwellBoltzmann distribution of speeds, we use the distribution to calculate the average value of v^{2}.
- Decaying exponential - very few high speed molecules
- M/2RT forces exp to zero for high molar mass molecules
- M/2RT keeps exp high for high temperatures
- $v^{2} \exp \rightarrow 0$ as $v \rightarrow 0$: few slow molecules
- Remaining factors ensure that all speeds are normalised

Obtaining probability

$$
f(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}
$$

- The Maxwell-Boltzmann distribution can be used to evaluate the fraction of MQs in the range of v_{1} to v_{2}
- to obtain this we integrate $f(v)$ between v_{1} and $v_{2} \mathrm{~F}\left(v_{1}, v_{2}\right)=\int_{v_{1}}^{v_{2}} f(v) \mathrm{d} v$

Velocity selector

- The Maxwell-Boltzmann distribution has been verified experimentally, MQlar speeds can be measured directly with a velocity selector.
- The spinning cylinder has channels that permit the passage of only those MQs with appropriate speed, their \# is determined by collection at detector.

Mean values

$$
f(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}
$$

- Once we have the Maxwell-Boltzmann distribution we can calculate the mean value of any power of the speed by evaluating the appropriate integral: $\left\langle v^{n}\right\rangle=\int_{0}^{\infty} v^{n} f(v) \mathrm{d} v$.
- Integration with $n=2$ results in $v_{R M S}=\left(\frac{3 R T}{M}\right)^{1 / 2}$.
- $v_{\text {RMS }} \propto T^{1 / 2}$ and $v_{\text {RMS }} \propto 1 / M^{1 / 2}$

- $\rightarrow T \uparrow v_{\mathrm{RMS}} \uparrow$ and $M \uparrow v_{\mathrm{RMS}} \downarrow$
- Sound waves are pressure waves and for them to propagate MQs of the gas must move to form regions of high \& low pressures.
$\bullet \rightarrow v_{\mathrm{RMS}}$ of MQs should be comparable with the speed of sound ($340 \mathrm{~m} \mathrm{~s}^{-1}$)

Mean speed of MQs in a gas

- Calculate the speed, $v_{\text {mean }}$ of $\mathrm{N}_{2}\left(M=28.02 \mathrm{~g} \mathrm{~mol}^{-1}\right) \mathrm{MQs}$ at $25^{\circ} \mathrm{C}$.
- Use $v_{\text {mean }}=\int_{0}^{\infty} v f(v) \mathrm{d} v$
- Reminder: $f(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}$
- Remember that $\int_{0}^{\infty} x^{3} e^{-a x^{2}} \mathrm{~d} x=\frac{1}{2 a^{2}}$ (common integrals)

Answer

$$
\int_{0}^{\infty} x^{3} e^{-a x^{2}} \mathrm{~d} x=\frac{1}{2 a^{2}}
$$

- $v_{\text {mean }}=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-M v^{2} / 2 R T} \mathrm{~d} v$
- $v_{\text {mean }}=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} \frac{1}{2}\left(\frac{2 R T}{M}\right)^{1 / 2}=\left(\frac{8 R T}{\pi M}\right)^{1 / 2}=475 \mathrm{~m} \mathrm{~s}^{-1}$

Conclusion of the Maxwell-Boltzmann distribution

- Mean speed: $v_{\text {mean }}=\left(\frac{8 R T}{\pi M}\right)^{1 / 2}$, for a perfect gas
- Most probable speed: $v_{m p}=\left(\frac{2 R T}{\pi M}\right)^{1 / 2}$
- Relative mean speed: $v_{\text {rel }}=2^{1 / 2} v_{\text {mean }}$, perfect gas, identical MQs
- Relative speed of 2 dissimilar MQs of masses m_{A} and $m_{\mathrm{B}}: v_{r e l}=\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2}$, where $\mu=\frac{m_{A} m_{B}}{m_{A}+m_{B}}$

Figure 21-6
Atkins Physical
Figure 21-6
Atkins hhysical Chemistry, Eighth Edition
O 2006 Peter Atkins and ylio de Paula

MQlar collisions

- Although the kinetic-MQlar theory assumes that MQs are point-like, we can count a 'hit' whenever the MQs' centres come within a distance from each other.
- d is called the collision diameter, it is in the order of the actual diameter of MQs.
- Consider MQs except 1 'frozen', when the mobile MQ travels through the gas with $v_{\text {rel }}$ (relative speed) during Δt, it sweeps out a collision tube of cross section area $\sigma=\pi d^{2}$ and length $v_{\text {rel }} \Delta t$, i.e. of volume $\sigma v_{\text {rel }} \Delta t$.
- \# of stationary MQs with centres inside the tube is given by the volume of the tube multiplied by the number density $(\mathcal{N}=N / V)$ as $\mathcal{N} \sigma v_{\text {rel }} \Delta t$.
- In terms of pressure this yields: $\mathcal{N}=\frac{N}{V}=\frac{n N_{A}}{V}=\frac{n N_{A}}{n R T / p}=\frac{p}{k T}$

Collision frequency

- The collision frequency for a perfect gas is given as the number of hits as a function of time, i.e. $\mathcal{N} \sigma v_{\text {rel }} \Delta t / \Delta t: z=\sigma v_{\text {rel }} \mathcal{N}$
- At constant volume, $z \uparrow$ with $T \uparrow$
- In terms of pressure (we have seen that $\mathcal{N}=\frac{p}{k T}$): $z=\frac{\sigma v_{\text {rel }} p}{k T}$
- At constant temperature z αp (number density \uparrow when $p \uparrow$)
- The area $\sigma=\pi d^{2}$ is called the collision cross-section of the MQs.

Molecular collisions

- For a $\mathrm{N}_{2} \mathrm{MQ}$ at 101 kPa and $25^{\circ} \mathrm{C} v_{\text {mean }}=475 \mathrm{~m} \mathrm{~s}^{-1}$.
- Using $\sigma=0.43 \mathrm{~nm}^{2}$, determine the collision frequency.
- Note that $v_{\text {rel }}=2^{1 / 2} v_{\text {mean }}$
- Use $z=\frac{\sigma v_{r e l} p}{k T}$

Answer

- $z=\frac{\sigma v_{r e l} p}{k T}=\frac{\left(0.43 * 10^{-18} \mathrm{~m}^{2}\right)\left(2^{\frac{1}{2}} * 475 \mathrm{~m} \mathrm{~s}^{-1}\right)\left(1.01 * 10^{5} \mathrm{~Pa}\right)}{\left(1.381 * 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}=7.1 * 10^{9} \mathrm{~s}^{-1}$
- So a given MQ collides $c a .7^{*} 10^{9}$ times every second!

Mean free path

- From z we may calculate the mean free path: $\lambda=\frac{v_{r e l}}{z}$, for a perfect gas, with a pressure dependence of $\lambda=\frac{k T}{\sigma p}$.
- Doubling the pressure decreases mean free path by half.
- Although T appears in eq. in a sample of constant $V: p \propto T$ so T / p remains constant. Therefore, the mean free path is independent of T in a sample of gas in a contained of fixed V.
- Typically $\lambda \approx 70 \mathrm{~nm}$ for nitrogen at 1 atm
- $v \approx 500 \mathrm{~m} \mathrm{~s}^{-1}$ at 298 K

Mean free path

- What is the mean free path for N_{2} MQs if $v_{\text {mean }}=475 \mathrm{~m} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$, and if $z=7.1^{*} 10^{9} \mathrm{~s}^{-1}$ at 1.00 atm .
- $v_{\text {rel }}=2^{1 / 2} v_{\text {mean }}$
- $\lambda=\frac{v_{r e l}}{z}$

Answer

- $\lambda=\frac{v_{r e l}}{z}=\frac{2^{1 / 2} v_{m e a n}}{z}=\frac{2^{1 / 2} * 475 m s^{-1}}{7.1 * 10^{9} s^{-1}}=9.5 * 10^{-8} m$.

Collisions with walls and surfaces

- Key result for accounting for transport in the gas phase is the rate at which MQs strike an area.
- Consider a wall of area A, perpendicular to the x-axis.
- If a MQ has $v_{x}>0$, it will strike the wall within Δt if it lies within a distance of $v_{x} \Delta t$ from the wall.
- All MQs in the $A v_{x} \Delta t$ volume and with a + ve x component will strike it.
- The total \# of collisions is $\mathcal{N A} A v_{x} \Delta t$. However, to take account of a range of velocities we must integrate: \# collisions $=\mathcal{N A} \Delta t \int_{0}^{\infty} v_{x} f\left(v_{x}\right) \mathrm{d} v_{x}$.
- The collision flux is the \# of collisions divided by the area and time interval: $Z_{W}=\mathcal{N} \int_{0}^{\infty} v_{x} f\left(v_{x}\right) \mathrm{d} v_{x}$, and as $\int_{0}^{\infty} v_{x} f\left(v_{x}\right) \mathrm{d} v_{x}=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} \int_{0}^{\infty} v_{x} e^{-m v_{x}^{2} / 2 k T} \mathrm{~d} v_{x}=\left(\frac{k T}{2 \pi m}\right)^{1 / 2}$ (Consider: $\int_{0}^{\infty} x e^{-a x^{2}} \mathrm{~d} x=\frac{1}{2 a^{\prime}}$, common integrals)
- $Z_{W}=\mathcal{N}\left(\frac{k T}{2 \pi m}\right)^{1 / 2}$, then substitute $\mathcal{N}=p / k T$.
- The collision flux: $Z_{W}=\frac{p}{(2 \pi m k T)^{1 / 2}}$, for a perfect gas.

Effusion

- !a gas with $p \& T$ separated from vacuum by a small hole; the rate of escape of MQs equals the rate at which they strike the hole.
- For the A_{0} area: Rate of effusion $=Z_{W} A_{0}=\frac{p A_{0}}{(2 \pi m k T)^{1 / 2}}$.
- As $M=m N_{A}$, this is inversely proportional to $M^{1 / 2}$.

Effusion

- Empirical observations summarised by Graham's law of effusion, stating that the rate of effusion $\alpha 1 / M^{1 / 2}$.
- As we've seen $v_{\text {mean }}=\left(\frac{8 R T}{\pi M}\right)^{1 / 2}$, so will be the rate through which MQs strike a hole.

Calculating vapour pressure from mass loss

- Caesium (m.p. $29^{\circ} \mathrm{C}$, b.p. $686^{\circ} \mathrm{C}$) was introduced into a container and heated at 500 K . When a hole of diameter 0.50 mm was opened in the container for 100 s , a mass loss of 385 mg was measured.
- Calculate the vapour pressure of liquid caesium at 500 K . Note, this is called the Knudsen method.
- Use $\Delta m=Z_{W} A_{0} m \Delta t\left(Z_{W}-\right.$ collision flux $\left.Z_{W}=\frac{p}{(2 \pi m k T)^{1 / 2}}\right)$

Answer

- $p_{\text {vap }}$ is constant inside the container despite the hole as the hot liquid replenished the vapour phase. The rate of effusion is therefore also constant.
- $\Delta m=Z_{W} A_{0} m \Delta t=\frac{p A_{0} m \Delta t}{(2 \pi m k T)^{1 / 2}}=\frac{p A_{0} m^{1 / 2} \Delta t}{(2 \pi k T)^{1 / 2}}$.
- $p=\left(\frac{2 \pi k T}{m}\right)^{1 / 2} \frac{\Delta m}{A_{0} \Delta t}=\left(\frac{2 \pi R T}{M}\right)^{1 / 2} \frac{\Delta m}{A_{0} \Delta t}=8.7^{*} 10^{3} \mathrm{kgm}^{-1} \mathrm{~s}^{-2}(\mathrm{~Pa})$

Transport properties of gases

- Plays an important role in the atmosphere; kinetic theory extended to extract quantitative expressions
- A MQ carries properties through space for the distance of its mean free path.
- Describe the motion of all types of particles in all types of fluids

Phenomenological equations

- Transport properties are commonly expressed in terms of 'phenomenological equations'.
- They are empirical summaries of experimental observations, without (initially) being based on the understanding of MQlar processes responsible for the property.
- Net rate of transport of a property is measured by its flux, J, the quantity of that property passing through a given area in a given time interval (property/(area*duration)).
- If matter is flowing (cf. diffusion) \rightarrow matter flux (\#MQs $/ \mathrm{m}^{2} \mathrm{~s}$), if it's energy (cf. thermal conduction) \rightarrow energy flux ($\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}$).

Fick's $1^{\text {st }}$ law of diffusion

- Experiments show that $J \alpha 1^{\text {st }}$ derivative of some other related property.
- J (matter) $\propto \frac{d \mathcal{N}}{d z}, \mathcal{N}$ - \# density of particles per unit V.
- Proportionality of J (matter) to concentration is given by Fick's first law of diffusion;
- If the concentration gradient varies steeply with position, then diffusion will be fast.
- There is no net flux is the concentration is uniform
- Similarly rate of thermal conduction α temperature gradient; J (energy of thermal motion) $\propto \frac{d T}{d z}$.

Figure 21-10 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

Phenomenological parameters: mass and heat

- +ve J : flux towards +ve z and vice versa.
- As matter flows from high concentration towards low, J is +ve when $\frac{d \mathcal{N}}{d z}$ is -ve, thus the coefficient of proportionality must be-ve.
- Diffusion coefficient; J (matter) $=-D \frac{d \mathcal{N}}{d z} \cdot[\mathrm{D}]=\mathrm{m}^{2} \mathrm{~s}^{-1}$
- Similarly, energy of thermal motion (heat) migrates high T
 towards low; $J($ energy of thermal motion $)=-\kappa \frac{d T}{d z}$, thermal conductivity $\left[\mathrm{JK}^{-1} \mathrm{~m}^{-1}\right.$ or $\mathrm{WK}^{-1} \mathrm{~m}^{-1}$]

Phenomenological parameters: momentum

- To see connection btw J(momentum) \& viscosity - consider a Newtonian (laminar) flow; a series of layers moving past each other
- The layer next to the wall - stationary, velocity of successive layers varies linearly w distance, z.
- If the entering layer has high linear momentum, it accelerates the layer
- If the entering layer has low linear momentum, it retards the layer
- As retarding effect depends on transfer of the x-component of linear momentum into the layer of interest, the viscosity depends on the flux of x-component in the z-direction
- flux of x-component $\alpha \mathrm{d} v_{x} / \mathrm{dz}$ as there is no net flux when all layers move w the same v.

- Viscosity: $J(x-$ component of momentum $)=-\eta \frac{d v_{x}}{d z} ;\left[\mathrm{kgm}^{-1} \mathrm{~s}^{-1}\right.$, or Pa s]

Figure 21-11
Atkins Physical
Atkins Physical Chemistry, Eighth Edition
Q 2006 Peter Atkins and Julio de Paula

Energy flux

- Suppose a T difference of 10 K between 2 metal plates separated by 1.0 cm .
- What is the energy flux for $\kappa=0.024 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1}$?
- How much energy would be transferred between the two plates in 1 h ?
- J(energy of thermal motion $)=-\kappa \frac{d T}{d z}$

Synoptic table 21.2* Transport properties of gases at 1 atm

	$\kappa /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$	$\eta /(\mu \mathrm{P})^{\dagger}$	
	273 K	273 K	293 K
Ar	0.0163	210	223
CO_{2}	0.0145	136	147
He	0.1442	187	196
$\mathrm{~N}_{2}$	0.0240	166	176

* More values are given in the Data section. $\dagger 1 \mu \mathrm{P}=10^{-7} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.

Answer

- The temperature gradient is $\mathrm{d} T / \mathrm{d} z=-10 \mathrm{~K} /\left(1.0^{*} 10^{-2} \mathrm{~m}\right)=-1.0^{*} 10^{3} \mathrm{~K} \mathrm{~m}^{-1}$
- The energy flux in air is:
J (energy of thermal motion) $=-\left(0.024 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)^{*}\left(-1.0^{*} 10^{3} \mathrm{~K} \mathrm{~m}^{-1}\right)=$

$$
+24 \mathrm{Jm}^{-2} \mathrm{~s}^{-1}
$$

- As a result, in $1.0 \mathrm{~h}(3600 \mathrm{~s})$ the transfer of energy through an area of the opposite walls of $1.0 \mathrm{~cm}^{2}$ is:
- Transfer=(24 J m$\left.{ }^{-2} \mathrm{~s}^{-1}\right)^{*}\left(1.01 * 10^{-4} \mathrm{~m}^{2}\right)^{*}(3600 \mathrm{~s})=8.6 \mathrm{~J}$

Transport parameters

- On average, MQs passing through A area at $z=0$ have travelled $c a$. λ (mean free path) since their last collision.
- $\mathcal{N}(z)$ - evaluated at $z=-\lambda$; using Taylor expansion truncated after $2^{\text {nd }}$ term;
- $\mathcal{N}(-\lambda)=\mathcal{N}(0)-\lambda\left(\frac{d \mathcal{M}}{d z}\right)_{0} \quad$ and $\quad \mathcal{N}(\lambda)=\mathcal{N}(0)+\lambda\left(\frac{d \mathcal{N}}{d z}\right)_{0}$

- Average \# of impact on the imaginary window of A_{0} during Δt interval is $Z_{\mathrm{w}} A_{0} \Delta t$.
- Z_{W} - collision flux, or $Z_{W}=\mathcal{N}\left(\frac{k T}{2 \pi m}\right)^{1 / 2}=\frac{1}{4} \mathcal{N} v_{\text {mean }}$.
- So the left to right flux: $J(L \rightarrow R)=\frac{\frac{1}{4} \mathcal{N}(-\lambda) v_{\text {mean }} A_{0} \Delta t}{A_{0} \Delta t}=\frac{1}{4} \mathcal{N}(-\lambda) v_{\text {mean }}$
- From right to left: $J(L \leftarrow R)=\frac{1}{4} \mathcal{N}(\lambda) v_{\text {mean }}$

Diffusion coefficient

- The net flux from left to right therefore is: $J_{Z}=J(L \rightarrow R)-$
$J(L \leftarrow R)=\frac{1}{4} v_{\text {mean }}\{\mathcal{N}(-\lambda)-\mathcal{N}(\lambda)\}=\frac{1}{4} v_{\text {mean }}\left\{\left[\mathcal{N}(0)-\lambda\left(\frac{d \mathcal{N}}{d z}\right)_{0}\right]-\right.$

Diffusion coefficient

- $\lambda\left(\mathrm{N}_{2}\right)=95 \mathrm{~nm}$ at 1.0 bar, their $v_{\text {mean }}=475 \mathrm{~ms}^{-1}$ at $25^{\circ} \mathrm{C}$.
- What is their diffusion coefficient?
- $D=\frac{1}{3} \lambda v_{\text {mean }}$

Answer

- $D=1 / 3^{*}\left(9.5^{*} 10^{-8} \mathrm{~m}\right)^{*} 475 \mathrm{~m} \mathrm{~s}^{-1}=1.5^{*} 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.

Physical interpretation of diffusion coefficient

- $\lambda \downarrow$ when $p \uparrow(\lambda=k T / \sigma p) \rightarrow D \downarrow w p \uparrow$, i.e. gas MQs diffuse slowly.
- $v_{\text {mean }} \uparrow$ with $T \uparrow\left(v_{\text {mean }}=(8 k T / \pi m)^{1 / 2}\right)$, i.e. MQs in a hot sample diffuse faster than in a cool sample.
- As $\lambda \uparrow$ when the collision cross-section of the MQs $\downarrow(\lambda=k T / \sigma p) \rightarrow D$ is greater for smaller MQs.

Summary: Fick's law of diffusion

- Transfer of material is caused by a non-uniform distribution of concentration
- $J_{A}=-c D \frac{d x_{A}}{d y}$
- c $\left[\mathrm{kmol} \mathrm{m}^{-3}\right]$: molar density

Thermal conductivity (reminder)

- According to equipartition theorem, each MQ carried an average energy $\varepsilon=v k T$, where v is a number of the order of 1. For atoms, $v=3 / 2$.
- When a MQ passes through the imaginary window, it transports that average energy. We assume uniform \mathcal{N} and a T gradient.
- MQs arriving from the left travel a λ from their last collision in a hotter region, and so with higher energy. MQs also arrive from the right after travelling a λ from a cooler region.
- The 2 opposing energy fluxes are: $J(L \rightarrow R)=\frac{1}{4} \mathcal{N} v_{\text {mean }} \varepsilon(-\lambda)$ and $J(L \leftarrow R)=\frac{1}{4} \mathcal{N} v_{\text {mean }} \varepsilon(\lambda)$, with Z_{w}.
- The net flux is: $J_{Z}=J(L \rightarrow R)-J(L \leftarrow R)=\frac{1}{4} v_{\text {mean }} \mathcal{N}\{\varepsilon(-\lambda)-\varepsilon(\lambda)\}=\frac{1}{4} v_{\text {mean }} \mathcal{N}\left\{\left[\varepsilon(0)-\lambda\left(\frac{d \varepsilon}{d z}\right)_{0}\right]-\right.$

Thermal conductivity (reminder)

- $\kappa=\frac{1}{3} v v_{\text {mean }} \lambda \mathcal{N} k$, thermal conductivity.
- Identifying that $\mathcal{N}=\frac{n N_{A}}{V}=[J] N_{A}$, where [J] - molar concentration of J, and noting that $v k N_{A}-$ molar constant-volume heat capacity of a perfect gas $\left(C_{\mathrm{V}, \mathrm{m}}=N_{\mathrm{A}}(\delta \varepsilon / \delta T)_{\mathrm{V}}\right)$, we get $\kappa=\frac{1}{3} v_{\text {mean }} \lambda[J] C_{V, m}$.
- Recognising that $\mathcal{N}=p / k T$ and using $D=\frac{1}{3} \lambda v_{\text {mean }}: \kappa=\frac{v p D}{T}$.
- As $\lambda \alpha 1 / p(\lambda=k T / \sigma p)$ and $\mathcal{N} \alpha p(\mathcal{N}=p / k T) \rightarrow \kappa \alpha\left(\lambda^{*} p\right)$ is independent on p.
- κ greater for gases with high heat capacity.

Summary: Fourier's law of heat conduction

- Heat will be transferred from the hot to the cold surface and this phenomenon is known as the conduction of heat.
- $Q \alpha A \frac{\left(T_{1} T_{2}\right)}{\delta}$, where δ - thickness of plate
- If δ - infinitesimally small: $q=\frac{Q}{A}=-\kappa \frac{d T}{d y}$
- $\mathrm{Q}[\mathrm{W}]$: rate of heat transfer, $\mathrm{q}\left[\mathrm{Wm}^{-2}\right]$: heat flux

Laminar flow

- MQs travelling from a fast layer to a slow layer transport a momentum of $m v_{x}(\lambda)$ to their new layer at $z=0$; those travelling the other way transport $m v_{x}(-\lambda)$.
- Assuming a uniform density, $Z_{\mathrm{W}}=\frac{1}{4} \mathcal{N} v_{\text {mean }}$.

- Momentum of MQs arriving from the right: $m v_{x}(\lambda)=m v_{x}(0)+m \lambda\left(\frac{d v_{x}}{d z}\right)_{0}$, and from the left: $m v_{x}(-\lambda)=m v_{x}(0)-m \lambda\left(\frac{d v_{x}}{d z}\right)_{0}$.
- The net flux of x-momentum is $J_{z}=\frac{1}{4} v_{\text {mean }} \mathcal{N}\left\{\left[m v_{x}(0)-\lambda\left(\frac{d v_{x}}{d z}\right)_{0}\right]-\right.$

Viscosity

- Similar considerations to diffusion can be made to obtain: $\eta=$ $\frac{1}{3} v_{\text {mean }} \lambda m \mathcal{N}$, viscosity.
- Using $m N_{\mathrm{A}}=M$ and $D=\frac{1}{3} \lambda v_{\text {mean }}$, we get $\eta=M D[\mathrm{~J}]$ or $\eta=p M D / R T$.
- As $\lambda \alpha 1 / p(\lambda=k T / \sigma p)$ and [J] αp, it follows that $\eta \alpha \lambda \mathcal{N}$ is independent of p.
- Because $v_{\text {mean }} \alpha T^{1 / 2}\left(v_{\text {mean }}=(8 k T / \pi m)^{1 / 2}\right), \eta \alpha T^{1 / 2}$, i.e. η of a gas \uparrow with $T \uparrow$.
- At high T MQs travel quicker so the flux is greater.
- By contrast, the η of liquids \downarrow when $T \uparrow$ because of intermolecular interactions, which we neglect in a perfect gas.

Summary: Newton's law of viscosity

- $\tau=\tau_{w}=R_{f} / A$, where τ_{w} - shear stress at the wall, $R_{\mathrm{f}}-\mathrm{drag}$ force or frictional drag
- $\tau=-\eta \frac{d v}{d y} ; \tau$ - shear stress; y-distance from wall; A - surface of plate
- Fluids are classified into 2 groups: Newtonian fluids, which obey Newton's law of viscosity, and non-Newtonian fluids, which do not obey Newton's law.
- Common fluids such as air, water, and oils generally behave as Newtonian fluids, whereas polymer solutions usually behave as non-Newtonian fluids.

Viscosity

- $D=1.5^{*} 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for N_{2} at $25^{\circ} \mathrm{C}$.
- Calculate the viscosity of N_{2} at 1.0 bar taking into account that $\mathrm{M}=28.02 \mathrm{~g} \mathrm{~mol}^{-1}$.
- $\eta=\frac{1}{3} v_{\text {mean }} \lambda m \mathcal{N}$

Answer

$\cdots=\frac{\left(1.0 \times 10^{5} \mathrm{~Pa} \mathrm{~m}^{-3}\right) \times\left(28.02 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}\right) \times\left(1.5 \times 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)}{\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}=$

Motion in liquids

- Liquids are central to industrial chemical reactions and it is crucial to know how the mobility of MQs and solutes in them carries with the conditions.
- Ionic motion is a way of exploring this motion as forces to move them can be applied electrically. From electrical measurements the properties of diffusing neutral MQs may also be inferred.
- Ions reach a terminal velocity when electrical force on them is balanced by the drag due to the viscosity of the solvent (\uparrow with $T \uparrow$).
- 2 aspects of motion in liquids will be considered, pure liquids and solutes.

Pure liquids

- Relaxation time measurements in NMR and EPR - mobilities of MQs, cf. rotation of large vs small MQs (5° steps vs jumps between different states, respectively);
- Inelastic neutron scattering - motion of particles, internal dynamics of macromolecules;
- Viscosity - $J_{z}(x-$ component of momentum $)=-\eta \frac{d v_{x}}{d z}$
- Unlike in a gas, for MQs to move in a liquid they must acquire a minimum energy (activation energy) to escape from its neighbours
- $\eta=\eta_{0} e^{E_{a} / R T}$, temperature dependence of η.
- Note +ve sign in exponent as $\eta \alpha$ (mobility) ${ }^{-1}$
- $\eta \downarrow$ with $T \uparrow$!

Table 20.4* Viscosities of liquids at 298 K

	$\eta /\left(10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$
Benzene	0.601
Mercury	1.55
Pentane	0.224
Water †	0.891

* More values are given in the Data section.
${ }^{\dagger}$ The viscosity of water corresponds to 0.891 cP .

Pure liquids

- One issue is related to the change of density on temperature change.
- Temperature dependence of a liquid when the density is constant (i.e. $\mathrm{d} V=0$) is much less than at constant pressure.
- Intermolecular interactions govern the magnitude of E_{a}.
- Calculating E_{a} is very complex problem and still unsolved.
- For example, at low $T, \eta\left(\mathrm{H}_{2} \mathrm{O}\right) \downarrow$ with $p \uparrow$ - this is in line with the rupture of H -bonds.

Liquid viscosity

- $\eta\left(\mathrm{H}_{2} \mathrm{O}\right)$ at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ is 0.890 mPa and 0.547 mPa s , respectively.
- Calculate the activation energy for molecular migration.
$\cdot \eta=\eta_{0} e^{E_{a} / R T}$

Answer

$\cdot \frac{\eta\left(T_{2}\right)}{\eta\left(T_{1}\right)}=e^{E_{a} / R\left(\frac{1}{T}_{2}-\frac{1}{T}_{1}\right)}=\frac{R \ln \left\{\eta\left(T_{2}\right) / \eta\left(T_{1}\right)\right\}}{{\frac{1}{T_{2}}-\frac{1}{T_{1}}}^{\left(8.314 J K^{-1} \mathrm{~mol}^{-1}\right) \ln \left(\frac{0.547}{0.890}\right)}}=\frac{1}{323 K}-\frac{1}{298 K}$, $1.56 \times 10^{4} \mathrm{Jmol}^{-1}$

Electrolyte solutions

- By studying the net transport of charged species through solution ions may be dragged through the solvent by the application of a potential difference between two electrodes immersed in the sample.
- Through understanding the series of events occurring for charged species it is possible to extrapolate some conclusions for species that are neutral.

Conductivity

- Fundamental measurement to study the motion of ions is the electrical resistance, R, of the solution $[R]=\Omega$.
- The conductance, G, the inverse of resistance; $[G]=\Omega^{-1}$ or S (Siemens).
- The conductance of a sample $\downarrow w$ its length (I) and $\uparrow w$ its cross-sectional area (A).
- Electrical conductance, the constant κ in $G=\kappa A / I ;[\kappa]=$ Sm $^{-1}$.
- Conductivity depends on the \# of ions present;
- Molar conductivity, $\Lambda_{m}=\kappa / c, c$ - molar concentration of the electrolyte. $\left[\Lambda_{m}\right]=S$ $\mathrm{m}^{2} \mathrm{~mol}^{-1}$
- strong electrolyte, an electrolyte with a molar conductivity that varies only slightly with concentration.
- weak electrolyte, an electrolyte with a molar conductivity that is normal at concentrations close to zero, but falls sharply to low values as the concentration increases.

Conductivity

- Kohlrausch's law, for the concentration dependence of the molar conductivity of a strong electrolyte at low concentration, $\Lambda_{m}=\Lambda_{m}{ }^{\circ}-$ $K^{1 / 2}$.
- \mathcal{K}, the Kohlrausch constant depends on the identity of the solute.
- limiting molar conductivity, $\Lambda_{m}{ }^{\circ}$, the molar conductivity at zero concentration, is the sum of contributions from its individual ions.
- law of the independent migration of ions, $\Lambda_{m}{ }^{\circ}=v_{+} \lambda_{+}+v_{-} \lambda_{-}$
- where $\lambda_{+} \& \lambda_{-}$: limiting molar conductivity of cations and anions, respectively, $v_{+} \& v_{-}$: \# of cations and anions per formula unit of electrolyte ($v_{+}=v_{-}=1$ for $\mathrm{HCl}, \mathrm{CuSO}_{4}, v_{+}=1$ and $v_{-}=2$ for MgCl_{2}).

Mobility of ions

- To interpret conductivity measurements we need to know
- why ions move at different rates,
- why they have different molar conductivities, and
- why the molar conductivities of strong electrolytes decrease with the sqrt of the molar concentration.
- Though the motion of an ion remains largely random, the presence of an electric field biases its motion, and the ion undergoes net migration through the solution.
- When the potential difference between the two planar electrodes a distance l apart is $\Delta \varphi$, the ions in the solution between them experience a uniform electric field of $E=\frac{\Delta \varphi}{l}$.
- In such a field an ion of charge ze experiences a force of $F=z e E=\frac{z e \Delta \varphi}{l}$.

Stokes' law

- A cation responds to the application of the field by acceleration to the -ve, an anion by an acceleration to the +ve electrode.

Cations	Anions		
Ag^{+}	6.24	Br^{-}	8.09
Ca^{2+}	6.17	$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$	4.24
Cu^{2+}	5.56	Cl^{-}	7.91
H^{+}	36.23	CO_{3}^{2-}	7.46
$\mathrm{~K}^{+}$	7.62	$\mathrm{~F}^{-}$	5.70
Li^{+}	4.01	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	10.5
Na^{+}	5.19	$\left[\mathrm{Fe}(\mathrm{CN})_{6} 4^{4-}\right.$	11.4
NH_{4}^{+}	7.63	l^{-}	7.96
$\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4} 4^{+}\right.$	4.65	NO_{3}^{-}	7.40
Rb^{+}	7.92	OH^{-}	20.64
Zn^{2+}	5.47	SO_{4}^{2-}	8.29

Data: Principally Table 21.4 and $u=\lambda / z F$.

- As the spherical ion of a radius moves through the solvent it experiences a frictional retarding force, $F_{\text {fric }}, \alpha s$, speed.
- $F_{\text {fric }}$ is given by Stokes' law: $F_{\text {fric }}=f s$, where $f=6 \pi \eta a$.
- The 2 forces act in opposite directions and the ions reach a terminal speed, the drift speed: $s=\frac{z e E}{f}$.
- $s \alpha$ strength of applied field; $s=u E$, where $u=\frac{z e}{f}=\frac{z e}{6 \pi \eta a}$: mobility of ion.

Ion mobility

- For an order of magnitude estimate we can take $z=1$ and a as the radius of an ion such as Cs^{+}, which is 170 pm .
- Calculate the mobility of Cs^{+}if the viscosity of its solution is $\eta=1.0 \mathrm{cP}$ (1.0 mPa)
- $u=\frac{z e}{f}=\frac{z e}{6 \pi \eta a}$

Answer

- $u=\frac{z e}{6 \pi \eta a}=\frac{1.6 \times 10^{19}{ }_{C}^{\mathrm{JV}}}{6 \pi \times\left(1.0 \times 10^{3} \mathrm{Pas}\right) \times\left(170 \times 10^{-12} \mathrm{~m}\right)}=5.0 \times 10^{-8} \mathrm{~m}^{2} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$
- This value means that when there is a potential difference of 1 V across a solution of length 1 cm (so $E=100 \mathrm{~V} \mathrm{~m}^{-1}$), the drift speed is typically about $5 \mu \mathrm{~m} \mathrm{~s}^{-1}$. That speeds seems slow but not on the MQlar scale where it corresponds to an ion passing about 10^{4} solvent MQs per second.

Hydrodynamic radius

- As the drift speed governs the rate at which charged species are transported, conductivity should decrease with viscosity and ion size.
- This is true for bulky ions but not for small ones, where $u \uparrow$ from Li^{+}to Cs^{+}even though ionic radius \uparrow.
- This contradiction may be resolved by understanding a in Stokes' law as the hydrodynamic radius, which takes into account all the $\mathrm{H}_{2} \mathrm{O}$ MQs it carries in its hydration shell.
- Small ions give rise to stronger electric fields than large ones so small ions are more extensively solvated.
- H^{+}though small has a very high mobility. According to the Grotthuss mechanism.
there is an effective motion of a proton that involves the rearrangement of the protons in a group of water MQs.

Mobility and conductivity

- ionic conductivity, the contribution of ions of one type to the molar conductivity:
$\lambda=z u F$, where $\mathrm{F}=9.648 * 10^{4} \mathrm{Cmol}^{-1}$, the Faraday constant.

molar conc. of each type of ion $=v c$
\# density $=v c N_{A}$
\# of ionsin $s \Delta t A=v c N_{A} s \Delta t A$
$J($ ions $)=\frac{v c N_{A} s \Delta t A}{\Delta t A}=v c N_{A} s$
J (charge) $=J($ ions $) \times z e=z e \times v c N_{A} s=z v c s F \xrightarrow{s=u E} z v c u E F$
$I=J A=\operatorname{zvcu} E F A \xrightarrow[\mathcal{E}=\Delta \phi \|]{ } \frac{z v c u F A \Delta \phi}{I}$
$\begin{array}{lr}I=\frac{\Delta \phi}{R}=G \Delta \phi=\frac{\kappa A \Delta \phi}{l} & \text { Potential difference by O } \\ \therefore \kappa=z v c u F \xrightarrow{\Lambda_{m}=\kappa / c} \kappa / v c=\lambda=z u F & G=\kappa A / I\end{array}$
$\Lambda_{m}^{0}=v_{+} \lambda_{+}+v_{-} \lambda_{-}=\left(v_{+} z_{+} u_{+}+v_{-} z_{-} u_{-}\right) F \quad$ anions so solution is in the limit at 0 concentration
- Kohlrausch's law, $\Lambda_{m}=\Lambda_{m}{ }^{\circ}-K c^{1 / 2}$ ion-ion interactions

Ionic conductivity

- The typical ionic mobility may be estimated as $5.0^{*} 10^{-8} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$.
- If $z=1$ for both the cation and the anion, what would the typical limiting molar conductivity be?
- $\lambda=z u F$
- $\mathrm{F}=9.648 * 10^{4} \mathrm{Cmol}^{-1}$

Answer

$J V^{-1}$

- $\lambda=z u F=\left(5.0^{*} 10^{-8} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)^{*}\left(9.648^{*} 10^{4} \mathrm{Cmol}^{-1}\right)=$ $4.8 * 10^{-3} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1} \mathrm{Cmol}^{-1}$

Ion-ion interactions

- relaxation effect: the reduction of an ion's mobility due to distortion of the ionic atmosphere.
- electrophoretic effect: the enhanced viscous drag due to the counter current of oppositely charged ions.
- Debye-Hückel-Onsager theory: a theory of the concentration dependence of the molar conductivity of a strong electrolyte, $K=\mathrm{A}+\mathrm{B} \Lambda_{\mathrm{m}}{ }^{\circ}$.

$$
\Lambda_{\mathrm{m}}=\Lambda_{\mathrm{m}}{ }^{0}-K \mathrm{c}^{1 / 2}
$$

Ion channel

- passive transport: the tendency for a species to move spontaneously down a concentration or potential gradient.
- active transport: transport that must be driven by an exergonic process.
- channel former: a protein that creates a hydrophilic pore in a membrane.
- ion channel: a protein that effects the movement of a specific ion down a potential gradient.
- ion pump: proteins that effect the active transport of ions.
- patch clamp technique: for studying ion transport across biological membranes.

K^{+}channel

Einstein relations

- An important relation between s and the thermodynamic force, F, acting on any kind of particle is $s=\frac{D F}{R T}$.
- An ion in solution has $s=u E$, in the presence of an electric field of strength E, and experiences a $F=N_{A} z e E$.
- Using $N_{A} e=F$ we get $u E=D F z E / R T$, so $u=\frac{z D F}{R T}$, Einstein relation.
- $\lambda=z u F=\frac{z^{2} D F^{2}}{R T}$, for each type of ion.
- From $\Lambda_{m}^{0}=v_{+} \lambda_{+}+v_{-} \lambda_{-} \quad \Lambda_{m}^{0}=\left(v_{+} z_{+}^{2} D_{+}+v_{-} z_{-}^{2} D_{-}\right) \frac{F^{2}}{R T^{\prime}}$, NernstEinstein equation.

Einstein relations

- $u=e z / f$ and $u=z D e / k T$ relate the mobility in a frictional force and to the diffusion coefficient, respectively.
- Combined: $D=\frac{k T}{f}$, Stokes-Einstein equation
- Using Stokes' law: $D=\frac{k T}{6 \pi \eta a}$.

Mobility and diffusion

- $u\left(\mathrm{SO}_{4}{ }^{2-}\right)=8.29 * 10^{-8} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$.
- Determine the diffusion coefficient at $25^{\circ} \mathrm{C}$.
- $u=z D e / k T$

Answer

- $D=u R T / z F=\left(8.29 * 10^{-8} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)^{*}\left(8.3145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)^{*}(298$ K) $/\left\{2 *\left(9.649 * 10^{4} \mathrm{C} \mathrm{mol}^{-1}\right)\right\}$
JV^{-1}

Any questions?

