
Mass transfer and separation 
Lecture 3



Recap fluid mixtures, colligative properties
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The kinetic theory of gases

• To be able to extract quantitative information from a qualitative 
model.

• Crucial for catalysis!

• According to the kinetic model a gas consists of MQs of negligible 
sizes in ceaseless random motion and obeying the laws of classical 
mechanics in their collisions.

• You need to be aware of Newton’s 2nd law of motion, i.e. a=F/m

• Assumption: the only contribution to the energy of a gas is the kinetic 
energy of MQs.
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Objectives

• Describe the motion of all types of particles in all types of fluids

• Concentrate of transportation properties:

• Diffusion ≡  migration of matter down a concentration gradient

• Thermal conduction ≡  migration of energy down a temperature gradient

• Electrical conduction ≡  migration of charge along a potential gradient

• Viscosity ≡  migration of linear momentum down a velocity gradient
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Kinetic Molecular Theory (KMT) of Gases

• A gas is composed of widely-separated MQs.
• MQs can be considered to be points; that is, they possess mass but have 

negligible volume.

• Gas MQs are in constant random motion.

• Collisions among MQs are perfectly elastic.
• Elastic collision: when the total translational kinetic energy is conserved.

• The average kinetic energy of MQs is proportional to the temperature 
of the gas in Kelvins.  

KE ∝ T
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Pressure of gas according to the kinetic model

• When a particle of mass m is travelling with a component of velocity of vx

parallel to the x-axis collides with the wall and is reflected, its linear 
momentum changes from mvx to –mvx.

• The x-component of momentum changes by 2mvx on each collision (while 
y and z are unchanged).

• Many MQs collide with the wall in a Δt interval; the total momentum 
change, ∆𝑝𝑡𝑜𝑡𝑎𝑙 = ∆𝑝𝑖𝑁, N=# of MQs that reach the wall in Δt.

• As a MQ with vx may travel vxΔt distance, all MQs vxΔt away from the wall 
will strike it.

• If the wall has an area of A, MQs in the AvxΔt volume will reach the wall.

• With number density of MQs of nNA/V, the # of MQs in this volume is 
(nNA/V)AvxΔt.
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Pressure of gas according to the kinetic model

• At any instant ½ of MQs are moving towards the wall, another ½ away
from it. Therefore, the average # of collisions with the wall 1/2nNAAvxΔt/V.

• ∆𝑝𝑡𝑜𝑡 =
𝑛𝑁𝐴𝐴𝑣𝑥∆𝑡

2𝑉
× 2𝑚𝑣𝑥 =

𝑛𝑚𝑁𝐴𝐴𝑣𝑥
2∆𝑡

𝑉
=

𝑛𝑀𝐴𝑣𝑥
2∆𝑡

𝑉

• To find the force, we calculate 
∆𝑝𝑡𝑜𝑡

∆𝑡
=

𝑛𝑀𝐴𝑣𝑥
2

𝑉
, the rate of momentum change

• Newton’s 2nd law: rate=F

• pressure: p=F/A =
𝑛𝑀𝑣𝑥

2

𝑉
; and as not all MQs travel with the same velocity, the 

average (i.e. detected) pressure 𝑝 =
𝑛𝑀<𝑣𝑥

2>

𝑉
, similar to the perfect gas 

equation of state.
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Pressure and MQlar speeds

• For a single MQ: 𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 and as 𝑣𝑅𝑀𝑆 = 𝑣2 1/2 so 𝑣𝑅𝑀𝑆

2 =

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2.

• As the MQs move randomly 𝑣𝑥
2 = 𝑣𝑦

2 = 𝑣𝑧
2 on average and so 𝑣𝑅𝑀𝑆

2 =

3 𝑣𝑥
2 and 𝑣𝑥

2 =
1

3
𝑣𝑅𝑀𝑆
2

• 𝑝 = 𝑛𝑀 𝑣𝑥
2 /𝑉 , sub eq. 𝑝𝑉 =

1

3
𝑛𝑀𝑣𝑅𝑀𝑆

2 , for a perfect gas, where M=mNA.

• The vRMS of MQs depends only on T as pV=constant (Boyle’s law). For it to 
be an equation of state: pV=nRT.

• The RMS speed of MQs: 𝑣𝑅𝑀𝑆 =
3𝑅𝑇

𝑀

1/2
for a perfect gas.
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Effect of T on MQlar speeds

R = 8.314 J/(mol K)

v

v

Hot molecules are fast, cold molecules are slow.

𝑣𝑅𝑀𝑆 =
3𝑅𝑇

𝑀

1/2
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Maxwell-Boltzmann distribution of speeds

• Boltzmann distribution f(v)=Ke-ε/kT→ fraction of MQs with velocity components of vx, vy and vz is 
proportional to an exp. function of their kinetic energy

• 𝜀 =
1

2
𝑚𝑣𝑥

2 +
1

2
𝑚𝑣𝑦

2 +
1

2
𝑚𝑣𝑧

2 , kinetic energy → 𝑓 𝑣 = 𝐾𝑒−(𝑚𝑣𝑥
2+𝑚𝑣𝑦

2+𝑚𝑣𝑧
2)/2𝑘𝑇 =

𝐾𝑒−𝑚𝑣𝑥
2/2𝑘𝑇𝑒−𝑚𝑣𝑦

2/2𝑘𝑇𝑒−𝑚𝑣𝑧
2/2𝑘𝑇.

• The distribution factorises into 𝑓 𝑣𝑥 = 𝐾𝑥𝑒
−𝑚𝑣𝑥

2/2𝑘𝑇, etc.

• To determine the Kx constant, recognise that a MQ must have a velocity component in the range 

of -∞<vx<∞, so ׬−∞
∞
𝑓 𝑣𝑥 d𝑣𝑥 = 1.

• This is a Gaussian function (0׬
∞
𝑒−𝑎𝑥

2
d𝑥 =

1

2

𝜋

𝑎

1

2
), so 1 = 𝐾𝑥 ∞−׬

∞
𝑒−𝑚𝑣𝑥

2/2𝑘𝑇 d𝑣𝑥 = 𝐾𝑥
2𝜋𝑘𝑇

𝑚

1

2
.

• Therefore, 𝐾𝑥 = 𝑚/2𝜋𝑘𝑇 1/2 so 𝑓 𝑣𝑥 =
𝑚

2𝜋𝑘𝑇

1/2
𝑒−𝑚𝑣𝑥

2/2𝑘𝑇
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Maxwell-Boltzmann distribution of speeds

• The probability of a MQ having a velocity in the range of vx to vx+dvx, vy to 
vy+dvy, and vz to vz+dvz is: 𝑓 𝑣𝑥 𝑓 𝑣𝑦 𝑓 𝑣𝑧 d𝑣𝑥d𝑣𝑦d𝑣𝑧 =

𝑚

2𝜋𝑘𝑇

3/2
𝑒−𝑚𝑣𝑥

2/2𝑘𝑇𝑒−𝑚𝑣𝑦
2/2𝑘𝑇𝑒−𝑚𝑣𝑧

2/2𝑘𝑇d𝑣𝑥d𝑣𝑦d𝑣𝑧 =

𝑚

2𝜋𝑘𝑇

3/2
𝑒−𝑚𝑣2/2𝑘𝑇d𝑣𝑥d𝑣𝑦d𝑣𝑧, since v2=vx

2+vy
2+vz

2

• To evaluate the probability of a MQ having speed off v to v+dv regardless of 
the direction, we consider the shell of the velocity space: 𝑓 𝑣 d𝑣 =

4𝜋𝑣2d𝑣
𝑚

2𝜋𝑘𝑇

3/2
𝑒−𝑚𝑣2/2𝑘𝑇

• 𝑓 𝑣 = 4𝜋
𝑚

2𝜋𝑘𝑇

3/2
𝑣2𝑒−𝑚𝑣2/2𝑘𝑇.
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Effect of Molecular Mass on MQlar Speeds

• The distribution of speeds of three different gases at the same 
temperature

𝑣𝑅𝑀𝑆 =
3𝑅𝑇

𝑀

1/2

Heavy molecules are slow, light molecules are fast 12



Features of the Maxwell –Boltzmann 
distribution of speeds
• Maxwell distribution for fraction (f) of 

molecules with speeds from v to v+dv

𝑓 𝑣 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2

𝑣2𝑒−𝑀𝑣
2/2𝑅𝑇

𝑓 𝑣 = 4𝜋
𝑚

2𝜋𝑘𝑇

3/2

𝑣2𝑒−𝑚𝑣2/2𝑘𝑇

13



Maxwell-Boltzmann distribution of speeds

• The 𝑓 𝑣 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2
𝑣2𝑒−𝑀𝑣2/2𝑅𝑇 function is called Maxwell-

Boltzmann distribution of speeds, we use the distribution to calculate 
the average value of v2.

• Decaying exponential – very few high speed molecules

• M/2RT forces exp to zero for high molar mass molecules

• M/2RT keeps exp high for high temperatures

• v2 exp → 0 as v → 0: few slow molecules

• Remaining factors ensure that all speeds are normalised
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Obtaining probability

• The Maxwell-Boltzmann distribution can be 
used to evaluate the fraction of MQs in the 
range of v1 to v2

• to obtain this we integrate f(v) between v1 and 

v2 F 𝑣1, 𝑣2 = 𝑣1׬
𝑣2 𝑓 𝑣 d𝑣

𝑓 𝑣 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2

𝑣2𝑒−𝑀𝑣
2/2𝑅𝑇
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Velocity selector

• The Maxwell-Boltzmann distribution has 
been verified experimentally, MQlar
speeds can be measured directly with a 
velocity selector.

• The spinning cylinder has channels that 
permit the passage of only those MQs 
with appropriate speed, their # is 
determined by collection at detector.
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Mean values

• Once we have the Maxwell-Boltzmann distribution we can calculate the 
mean value of any power of the speed by evaluating the appropriate 

integral: 𝑣𝑛 = ׬
0

∞
𝑣𝑛 𝑓 𝑣 d𝑣.

• Integration with n=2 results in 𝑣𝑅𝑀𝑆 =
3𝑅𝑇

𝑀

1/2
.

• vRMS α T1/2 and vRMS α 1/M1/2

• → T↑ vRMS ↑ and M↑ vRMS↓

• Sound waves are pressure waves and for them to propagate MQs of the gas 
must move to form regions of high & low pressures.

• → vRMS of MQs should be comparable with the speed of sound (340 m s-1)

17

𝑓 𝑣 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2

𝑣2𝑒−𝑀𝑣
2/2𝑅𝑇



Mean speed of MQs in a gas

• Calculate the speed, vmean, of N2 (M=28.02 g mol-1) MQs at 25 °C.

• Use 𝑣𝑚𝑒𝑎𝑛 = 0׬
∞
𝑣𝑓 𝑣 d𝑣

• Reminder: 𝑓 𝑣 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2
𝑣2𝑒−𝑀𝑣2/2𝑅𝑇

• Remember that 0׬
∞
𝑥3𝑒−𝑎𝑥

2
d𝑥 =

1

2𝑎2
(common integrals)
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Answer

• 𝑣𝑚𝑒𝑎𝑛 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2

0׬
∞
𝑣3𝑒−𝑀𝑣2/2𝑅𝑇 d𝑣

• 𝑣𝑚𝑒𝑎𝑛 = 4𝜋
𝑀

2𝜋𝑅𝑇

3/2 1

2

2𝑅𝑇

𝑀

1/2
=

8𝑅𝑇

𝜋𝑀

1/2
=475 m s-1

න
0

∞

𝑥3𝑒−𝑎𝑥
2
d𝑥 =

1

2𝑎2
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Conclusion of the Maxwell-Boltzmann 
distribution

• Mean speed: 𝑣𝑚𝑒𝑎𝑛 =
8𝑅𝑇

𝜋𝑀

1/2
, for a perfect gas

• Most probable speed: 𝑣𝑚𝑝 =
2𝑅𝑇

𝜋𝑀

1/2

• Relative mean speed: 𝑣𝑟𝑒𝑙 = 21/2𝑣𝑚𝑒𝑎𝑛, perfect gas, 
identical MQs

• Relative speed of 2 dissimilar MQs of masses mA and 

mB: 𝑣𝑟𝑒𝑙 =
8𝑘𝑇

𝜋μ

1/2
, where 𝜇 =

𝑚𝐴𝑚𝐵

𝑚𝐴+𝑚𝐵
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MQlar collisions

• Although the kinetic-MQlar theory assumes that MQs are point-like, we can count a ‘hit’ whenever the 
MQs’ centres come within a d distance from each other.

• d is called the collision diameter, it is in the order of the actual diameter of MQs.

• Consider MQs except 1 ‘frozen’, when the mobile MQ travels through the gas with vrel (relative speed) 
during Δt, it sweeps out a collision tube of cross section area σ=πd2 and length vrelΔt, i.e. of volume 
σvrelΔt.

• # of stationary MQs with centres inside the tube is given by the volume of the tube multiplied by the 
number density (N=N/V) as NσvrelΔt.

• In terms of pressure this yields: N=
𝑁

𝑉
=

𝑛𝑁𝐴

𝑉
=

𝑛𝑁𝐴

𝑛𝑅𝑇/𝑝
=

𝑝

𝑘𝑇

vrelΔt
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Collision frequency

• The collision frequency for a perfect gas is given as the number of hits 
as a function of time, i.e. NσvrelΔt/Δt: 𝑧 = 𝜎𝑣𝑟𝑒𝑙N

• At constant volume, z↑ with T↑

• In terms of pressure (we have seen that N=
𝑝

𝑘𝑇
): 𝑧 =

𝜎𝑣𝑟𝑒𝑙𝑝

𝑘𝑇

• At constant temperature z α p (number density ↑ when p↑)

• The area σ=πd2 is called the collision cross-section of the MQs.
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Molecular collisions

• For a N2 MQ at 101 kPa and 25 °C vmean=475 m s-1.

• Using σ=0.43 nm2, determine the collision frequency.

• Note that vrel=21/2vmean

• Use 𝑧 =
𝜎𝑣𝑟𝑒𝑙𝑝

𝑘𝑇
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Answer

• 𝑧 =
𝜎𝑣𝑟𝑒𝑙𝑝

𝑘𝑇
=

(0.43∗10−18𝑚2)(2
1
2∗475 𝑚 𝑠−1)(1.01∗105 𝑃𝑎)

(1.381∗10−23𝐽 𝐾−1)(298 𝐾)
= 7.1 ∗ 109 𝑠−1

• So a given MQ collides ca. 7*109 times every second!
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Mean free path

• From z we may calculate the mean free path: λ =
𝑣𝑟𝑒𝑙

𝑧
, for a perfect 

gas, with a pressure dependence of λ =
𝑘𝑇

𝜎𝑝
.

• Doubling the pressure decreases mean free path by half.

• Although T appears in eq. in a sample of constant V: p α T so T/p
remains constant. Therefore, the mean free path is independent of T 
in a sample of gas in a contained of fixed V.

• Typically λ ≈ 70 nm for nitrogen at 1 atm

• v ≈ 500 m s-1 at 298 K
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Mean free path

• What is the mean free path for N2 MQs if vmean=475 m s-1 at 25 °C, 
and if z=7.1*109 s-1 at 1.00 atm.

• vrel=21/2vmean

• λ =
𝑣𝑟𝑒𝑙

𝑧
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Answer

• λ =
𝑣𝑟𝑒𝑙

𝑧
=

2 Τ1 2𝑣𝑚𝑒𝑎𝑛

𝑧
=

2 Τ1 2∗475 𝑚 𝑠−1

7.1∗109𝑠−1
= 9.5 ∗ 10−8𝑚.
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Collisions with walls and surfaces

• Key result for accounting for transport in the gas phase is the rate at which MQs strike an area.

• Consider a wall of area A, perpendicular to the x-axis.

• If a MQ has vx>0, it will strike the wall within Δt if it lies within a distance of vxΔt from the wall.

• All MQs in the AvxΔt volume and with a +ve x component will strike it.

• The total # of collisions is NAvxΔt. However, to take account of a range of velocities we must integrate: # 

collisions= NAΔt0׬
∞
𝑣𝑥𝑓(𝑣𝑥) d𝑣𝑥.

• The collision flux is the # of collisions divided by the area and time interval: 𝑍𝑊 = N0׬
∞
𝑣𝑥𝑓(𝑣𝑥) d𝑣𝑥, and as 

0׬
∞
𝑣𝑥𝑓(𝑣𝑥) d𝑣𝑥 =

𝑚

2𝜋𝑘𝑇

1/2

0׬
∞
𝑣𝑥 𝑒

−𝑚𝑣𝑥
2/2𝑘𝑇d𝑣𝑥 =

𝑘𝑇

2𝜋𝑚

1/2
(Consider:0׬

∞
𝑥𝑒−𝑎𝑥

2
d𝑥 =

1

2𝑎
, common 

integrals)

• 𝑍𝑊 = N
𝑘𝑇

2𝜋𝑚

1/2
, then substitute N=p/kT.

• The collision flux: 𝑍𝑊 =
𝑝

2𝜋𝑚𝑘𝑇 1/2, for a perfect gas.
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Effusion

• !a gas with p & T separated from vacuum by a small hole; the rate  of 
escape of MQs equals the rate at which they strike the hole.

• For the A0 area: Rate of effusion= 𝑍𝑊𝐴0 =
𝑝𝐴0

2𝜋𝑚𝑘𝑇 1/2.

• As M=mNA, this is inversely proportional to M1/2.
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Effusion

• Empirical observations summarised by Graham’s law of effusion, 
stating that the rate of effusion α 1/M1/2.

• As we’ve seen 𝑣𝑚𝑒𝑎𝑛 =
8𝑅𝑇

𝜋𝑀

1/2
, so will be the rate through which 

MQs strike a hole.
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Calculating vapour pressure from mass loss

• Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a container and 
heated at 500 K. When a hole of diameter 0.50 mm was opened in 
the container for 100 s, a mass loss of 385 mg was measured.

• Calculate the vapour pressure of liquid caesium at 500 K. Note, this is 
called the Knudsen method.

• Use ∆𝑚 = 𝑍𝑊𝐴0𝑚∆𝑡 (ZW – collision flux 𝑍𝑊 =
𝑝

2𝜋𝑚𝑘𝑇 1/2)
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Answer

• pvap is constant inside the container despite the hole as the hot liquid 
replenished the vapour phase. The rate of effusion is therefore also 
constant.

• ∆𝑚 = 𝑍𝑊𝐴0𝑚∆𝑡 =
𝑝𝐴0𝑚∆𝑡

2𝜋𝑚𝑘𝑇 1/2 =
𝑝𝐴0𝑚

1/2∆𝑡

2𝜋𝑘𝑇 1/2 .

• 𝑝 =
2𝜋𝑘𝑇

𝑚

1/2 ∆𝑚

𝐴0∆𝑡
=

2𝜋𝑅𝑇

𝑀

1/2 ∆𝑚

𝐴0∆𝑡
=8.7*103 kgm-1s-2 (Pa)
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Transport properties of gases

• Plays an important role in the atmosphere; kinetic theory extended to 
extract quantitative expressions

• A MQ carries properties through space for the distance of its mean 
free path.

• Describe the motion of all types of particles in all types of fluids
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Phenomenological equations

• Transport properties are commonly expressed in terms of 
‘phenomenological equations’.

• They are empirical summaries of experimental observations, without 
(initially) being based on the understanding of MQlar processes 
responsible for the property.

• Net rate of transport of a property is measured by its flux, J, the 
quantity of that property passing through a given area in a given time 
interval (property/(area*duration)).

• If matter is flowing (cf. diffusion) → matter flux (#MQs/m2s), if it’s 
energy (cf. thermal conduction) → energy flux (J/m2s).
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Fick’s 1st law of diffusion

• Experiments show that J α 1st derivative of some 
other related property.

• 𝐽(𝑚𝑎𝑡𝑡𝑒𝑟) ∝
𝑑N
𝑑𝑧

,N - # density of particles per unit V.

• Proportionality of J(matter) to concentration is given 
by Fick’s first law of diffusion;
• If the concentration gradient varies steeply with position, 

then diffusion will be fast.

• There is no net flux is the concentration is uniform

• Similarly rate of thermal conduction α temperature 
gradient; 𝐽(𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛) ∝ 𝑑𝑇

𝑑𝑧
.
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Phenomenological parameters: mass and heat

• +ve J : flux towards +ve z and vice versa.

• As matter flows from high concentration towards low, J is 

+ve when 
𝑑N
𝑑𝑧

is –ve, thus the coefficient of proportionality 

must be –ve.

• Diffusion coefficient; 𝐽 𝑚𝑎𝑡𝑡𝑒𝑟 = −𝐷
𝑑N
𝑑𝑧

. [D]=m2s-1

• Similarly, energy of thermal motion (heat) migrates high T
towards low; 𝐽 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 = −𝜅

𝑑𝑇

𝑑𝑧
, thermal 

conductivity [JK-1m-1 or WK-1m-1]
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Phenomenological parameters: momentum

• To see connection btw J(momentum) & viscosity – consider a Newtonian 
(laminar) flow; a series of layers moving past each other

• The layer next to the wall – stationary, velocity of successive layers varies 
linearly w distance, z.

• If the entering layer has high linear momentum, it accelerates the layer

• If the entering layer has low linear momentum, it retards the layer

• As retarding effect depends on transfer of the x-component of linear 
momentum into the layer of interest, the viscosity depends on the flux of 
x-component in the z-direction

• flux of x-component α dvx/dz as there is no net flux when all layers move w the 
same v.

• Viscosity: 𝐽 𝑥 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = −𝜂
𝑑𝑣𝑥

𝑑𝑧
; [kgm-1s-1, or Pa s]
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Energy flux

• Suppose a T difference of 10 K between 2 metal plates separated by 
1.0 cm.

• What is the energy flux for κ=0.024 J K-1 m-1?

• How much energy would be transferred between the two plates in 
1h?

• 𝐽 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 = −𝜅
𝑑𝑇

𝑑𝑧
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Answer

• The temperature gradient is dT/dz=- 10K/(1.0*10-2 m)=-1.0*103 K m-1

• The energy flux in air is:

J(energy of thermal motion)=-(0.024 J K-1 m-1 s-1)*(-1.0*103 K m-1)=

+24 J m-2 s-1

• As a result, in 1.0 h (3600 s) the transfer of energy through an area of 
the opposite walls of 1.0 cm2 is:

• Transfer=(24 J m-2 s-1)*(1.01*10-4 m2)*(3600 s)=8.6 J
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Transport parameters

• On average, MQs passing through A area at z=0 have 
travelled ca. λ (mean free path) since their last collision.

• N(z) – evaluated at z=-λ; using Taylor expansion truncated after 2nd term;

• N −λ = N(0)−λ
𝑑N
𝑑𝑧 0

and N λ = N(0)+λ
𝑑N
𝑑𝑧 0

• Average # of impact on the imaginary window of A0 during Δt interval is ZWA0Δt.

• ZW – collision flux, or 𝑍𝑊 = N
𝑘𝑇

2𝜋𝑚

1/2
=

1

4
N𝑣𝑚𝑒𝑎𝑛.

• So the left to right flux: 𝐽 𝐿 → 𝑅 =
1

4
N(−λ)𝑣𝑚𝑒𝑎𝑛𝐴0∆𝑡

𝐴0∆𝑡
=

1

4
N(−λ)𝑣𝑚𝑒𝑎𝑛

• From right to left: 𝐽 𝐿 ← 𝑅 =
1

4
N λ 𝑣𝑚𝑒𝑎𝑛
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Diffusion coefficient

• The net flux from left to right therefore is: 𝐽𝑧 = 𝐽 𝐿 → 𝑅 −

𝐽 𝐿 ← 𝑅 =
1

4
𝑣𝑚𝑒𝑎𝑛 N −λ − N λ =

1

4
𝑣𝑚𝑒𝑎𝑛 ൜ N 0 − λ

𝑑N
𝑑𝑧 0

−
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Diffusion coefficient

• λ(N2)=95 nm at 1.0 bar, their vmean=475 ms-1 at 25 °C.

• What is their diffusion coefficient?

• 𝐷 =
1

3
λ 𝑣𝑚𝑒𝑎𝑛

42



Answer

• D=1/3*(9.5*10-8 m)*475 m s-1=1.5*10-5 m2 s-1.
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Physical interpretation of diffusion coefficient

• λ↓ when p↑ (λ=kT/σp) → D↓ w p↑, i.e. gas MQs diffuse slowly.

• vmean↑ with T↑ (vmean=(8kT/πm)1/2), i.e. MQs in a hot sample diffuse 
faster than in a cool sample.

• As λ↑ when the collision cross-section of the MQs↓ (λ=kT/σp) → D is 
greater for smaller MQs.
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Summary: Fick’s law of diffusion

• Transfer of material is caused by a non-uniform distribution of 
concentration

• 𝐽𝐴 = −𝑐𝐷
𝑑𝑥𝐴

𝑑𝑦

• c[kmol m-3]: molar density
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Thermal conductivity (reminder)

• According to equipartition theorem, each MQ carried an average energy ε=vkT, where v is a number of the 
order of 1. For atoms, v=3/2.

• When a MQ passes through the imaginary window, it transports that average energy. We assume uniform N
and a T gradient.

• MQs arriving from the left travel a λ from their last collision in a hotter region, and so with higher energy. 
MQs also arrive from the right after travelling a λ from a cooler region.

• The 2 opposing energy fluxes are: 𝐽 𝐿 → 𝑅 =
1

4
N𝑣𝑚𝑒𝑎𝑛𝜀(−λ) and 𝐽 𝐿 ← 𝑅 =

1

4
N𝑣𝑚𝑒𝑎𝑛𝜀(λ), with ZW

.

• The net flux is : 𝐽𝑧 = 𝐽 𝐿 → 𝑅 − 𝐽 𝐿 ← 𝑅 =
1

4
𝑣𝑚𝑒𝑎𝑛N 𝜀 −λ − 𝜀 λ =

1

4
𝑣𝑚𝑒𝑎𝑛N ൜ 𝜀 0 − λ

𝑑𝜀
𝑑𝑧 0

−
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Thermal conductivity (reminder)

• 𝜅 =
1

3
𝑣𝑣𝑚𝑒𝑎𝑛λN𝑘, thermal conductivity.

• Identifying thatN=
n𝑁𝐴
𝑉

= [𝐽]𝑁𝐴, where [J] – molar concentration of J, 

and noting that vkNA – molar constant-volume heat capacity of a 

perfect gas (CV,m=NA(δε/δT)V), we get 𝜅 =
1

3
𝑣𝑚𝑒𝑎𝑛λ[𝐽]𝐶𝑉,𝑚.

• Recognising that N=p/kT and using 𝐷 =
1

3
λ 𝑣𝑚𝑒𝑎𝑛: 𝜅 =

𝑣𝑝𝐷

𝑇
.

• As λα1/p (λ=kT/σp) and Nαp (N=p/kT) → κα(λ*p) is independent on 
p.

• κ greater for gases with high heat capacity.
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Summary: Fourier’s law of heat conduction

• Heat will be transferred from the hot to the cold surface 
and this phenomenon is known as the conduction of heat .

• 𝑄𝛼𝐴
𝑇1𝑇2

𝛿
, where  δ – thickness of plate

• If δ – infinitesimally small: 𝑞 =
𝑄

𝐴
= −𝜅

𝑑𝑇

𝑑𝑦

• Q[W]: rate of heat transfer, q[Wm-2]: heat flux
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Laminar flow

• MQs travelling from a fast layer to a slow layer transport a 
momentum of mvx(λ) to their new layer at z=0; those travelling the 
other way transport mvx(-λ).

• Assuming a uniform density, 𝑍W =
1

4
N𝑣𝑚𝑒𝑎𝑛.

• Momentum of MQs arriving from the right: 𝑚𝑣𝑥 λ = 𝑚𝑣𝑥 0 +𝑚λ
𝑑𝑣𝑥

𝑑𝑧 0
, and 

from the left: 𝑚𝑣𝑥 −λ = 𝑚𝑣𝑥 0 −𝑚λ
𝑑𝑣𝑥

𝑑𝑧 0
.

• The net flux of x-momentum is 𝐽𝑧 =
1

4
𝑣𝑚𝑒𝑎𝑛N ൜ 𝑚𝑣𝑥 0 − λ

𝑑𝑣𝑥

𝑑𝑧 0
−
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Viscosity

• Similar considerations to diffusion can be made to obtain: 𝜂 =
1

3
𝑣𝑚𝑒𝑎𝑛λ𝑚N , viscosity.

• Using mNA=M and 𝐷 =
1

3
λ 𝑣𝑚𝑒𝑎𝑛, we get η=MD[J] or η=pMD/RT.

• As λ α 1/p (λ=kT/σp) and [J] α p, it follows that η α λN is independent of p.

• Because vmean α T1/2 (vmean=(8kT/πm)1/2), η α T1/2, i.e. η of a gas ↑ with T↑.

• At high T MQs travel quicker so the flux is greater.

• By contrast, the η of liquids ↓ when T↑ because of intermolecular interactions, 

which we neglect in a perfect gas.
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Summary: Newton’s law of viscosity

• 𝜏 = 𝜏𝑤 = 𝑅𝑓/𝐴, where τw– shear stress at the wall, Rf – drag force or 
frictional drag

• 𝜏 = −𝜂
𝑑𝑣

𝑑𝑦
; τ – shear stress; y –distance from wall; A – surface of plate

• Fluids are classified into 2 groups: Newtonian fluids , which obey Newton’s 
law of viscosity, and non-Newtonian fluids, which do not obey Newton’s law.

• Common fluids such as air, water, and oils generally behave as Newtonian 
fluids, whereas polymer solutions usually behave as non-Newtonian fluids.
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Viscosity

• D=1.5*10-5 m2s-1 for N2 at 25 °C.

• Calculate the viscosity of N2 at 1.0 bar taking into account that 
M=28.02 g mol-1.

• 𝜂 =
1

3
𝑣𝑚𝑒𝑎𝑛λ𝑚N
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Answer

• η =
1.0×105𝑃𝑎 × 28.02×10−3 𝑘𝑔 𝑚𝑜𝑙−1 × 1.5×10−5𝑚2𝑠−1

8.314 𝐽𝐾−1𝑚𝑜𝑙−1 ×(298 𝐾)
=

1.7 × 10−5 𝑘𝑔 𝑚−1𝑠−1

J m-3
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Motion in liquids

• Liquids are central to industrial chemical reactions and it is crucial to 
know how the mobility of MQs and solutes in them carries with the 
conditions.

• Ionic motion is a way of exploring this motion as forces to move them 
can be applied electrically. From electrical measurements the 
properties of diffusing neutral MQs may also be inferred.

• Ions reach a terminal velocity when electrical force on them is 
balanced by the drag due to the viscosity of the solvent (↑ with T↑).

• 2 aspects of motion in liquids will be considered, pure liquids and 
solutes.
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Pure liquids

• Relaxation time measurements in NMR and EPR – mobilities of MQs, cf. 
rotation of large vs small MQs (5° steps vs jumps between different states, 
respectively);

• Inelastic neutron scattering – motion of particles, internal dynamics of 
macromolecules;

• Viscosity - 𝐽𝑧 𝑥 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = −𝜂
𝑑𝑣𝑥

𝑑𝑧

• Unlike in a gas, for MQs to move in a liquid they 
must acquire a minimum energy (activation energy)
to escape from its neighbours
• 𝜂 = 𝜂0𝑒

𝐸𝑎/𝑅𝑇, temperature dependence of η.
• Note +ve sign in exponent as η α (mobility)-1

• η↓ with T↑!
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Pure liquids

• One issue is related to the change of density on 
temperature change.

• Temperature dependence of a liquid when the density 
is constant (i.e. dV=0) is much less than at constant 
pressure.

• Intermolecular interactions govern the magnitude of Ea.

• Calculating Ea is very complex problem and still 
unsolved.

• For example, at low T, η(H2O)↓ with p↑ - this is in line 
with the rupture of H-bonds.
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Liquid viscosity

• η(H2O) at 25 °C and 50 °C is 0.890 mPa s and 0.547 mPa s, 
respectively.

• Calculate the activation energy for molecular migration.

• 𝜂 = 𝜂0𝑒
𝐸𝑎/𝑅𝑇
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Answer

•
𝜂(𝑇2)

𝜂(𝑇1)
= 𝑒

𝐸𝑎/𝑅(
1

𝑇2
−
1

𝑇1
)
=

𝑅 ln 𝜂(𝑇2)/𝜂(𝑇1)
1

𝑇2
−
1

𝑇1

=
8.314 𝐽𝐾−1𝑚𝑜𝑙−1 ln

0.547

0.890
1

323 𝐾
−

1

298 𝐾

=

1.56 × 104 𝐽𝑚𝑜𝑙−1

58



Electrolyte solutions

• By studying the net transport of charged species through solution –
ions may be dragged through the solvent by the application of a 
potential difference between two electrodes immersed in the sample.

• Through understanding the series of events occurring for charged 
species it is possible to extrapolate some conclusions for species that 
are neutral.

59



Conductivity

• Fundamental measurement to study the motion of ions is the electrical 
resistance, R, of the solution [R]=Ω.

• The conductance, G, the inverse of resistance; [G]=Ω-1 or S (Siemens).

• The conductance of a sample ↓ w its length (l) and ↑ w its cross-sectional area 
(A).

• Electrical conductance, the constant κ in G = κA/l; [κ]=Sm-1.

• Conductivity depends on the # of ions present;

• Molar conductivity, Λm = κ/c, c – molar concentration of the electrolyte. [Λm] = S 
m2 mol-1
• strong electrolyte, an electrolyte with a molar conductivity that varies only slightly with 

concentration.
• weak electrolyte, an electrolyte with a molar conductivity that is normal at concentrations 

close to zero, but falls sharply to low values as the concentration increases.
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Conductivity

• Kohlrausch’s law, for the concentration dependence of the molar 
conductivity of a strong electrolyte at low concentration, Λm = Λm° –
Kc1/2.

• K, the Kohlrausch constant depends on the identity of the solute.

• limiting molar conductivity, Λm°, the molar conductivity at zero 
concentration, is the sum of contributions from its individual ions.

• law of the independent migration of ions, Λm° = v+λ+ + v–λ–

• where λ+ & λ–: limiting molar conductivity of cations and anions, 
respectively, v+ & v–: # of cations and anions per formula unit of 
electrolyte (v+ = v– = 1 for HCl, CuSO4, v+ = 1 and v– = 2 for MgCl2). 
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Mobility of ions

• To interpret conductivity measurements we need to know
• why ions move at different rates,
• why they have different molar conductivities, and 
• why the molar conductivities of strong electrolytes decrease with the sqrt of the 

molar concentration.

• Though the motion of an ion remains largely random, the presence of an 
electric field biases its motion, and the ion undergoes net migration 
through the solution.

• When the potential difference between the two planar electrodes a 
distance 𝑙 apart is Δφ, the ions in the solution between them experience a 
uniform electric field of 𝐸 =

∆φ

𝑙
.

• In such a field an ion of charge ze experiences a force of 𝐹 = 𝑧𝑒𝐸 =
𝑧𝑒∆φ

𝑙
.
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Stokes’ law

• A cation responds to the application of the field 
by acceleration to the –ve, an anion by an acceleration
to the +ve electrode.

• As the spherical ion of a radius moves through the solvent it experiences a 
frictional retarding force, Ffric, α s, speed.

• Ffric is given by Stokes’ law: Ffric=fs, where f=6πηa.

• The 2 forces act in opposite directions and the ions reach a terminal speed, 

the drift speed: 𝑠 =
𝑧𝑒𝐸

𝑓
.

• s α strength of applied field; s=uE, where 𝑢 =
𝑧𝑒

𝑓
=

𝑧𝑒

6𝜋η𝑎
: mobility of ion.
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Ion mobility

• For an order of magnitude estimate we can take z=1 and a as the 
radius of an ion such as Cs+, which is 170 pm.

• Calculate the mobility of Cs+ if the viscosity of its solution is η=1.0 cP
(1.0 mPa)

• 𝑢 =
𝑧𝑒

𝑓
=

𝑧𝑒

6𝜋η𝑎
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Answer

• 𝑢 =
𝑧𝑒

6𝜋η𝑎
=

1.6×1019 𝐶

6𝜋× 1.0×103 𝑃𝑎 𝑠 × 170×10−12𝑚
= 5.0 × 10−8 𝑚2𝑉−1𝑠−1

• This value means that when there is a potential difference of 1 V 
across a solution of length 1 cm (so E=100 V m-1), the drift speed is 
typically about 5 μm s-1. That speeds seems slow but not on the 
MQlar scale where it corresponds to an ion passing about 104 solvent 
MQs per second.

J V-1

J m-3
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Hydrodynamic radius

• As the drift speed governs the rate at which charged species are transported, 
conductivity should decrease with viscosity and ion size.

• This is true for bulky ions but not for small ones, where u↑ from Li+ to Cs+ even though 
ionic radius ↑.

• This contradiction may be resolved by understanding a in Stokes’ law as the 
hydrodynamic radius, which takes into account all the H2O MQs it carries in its hydration 
shell.
• Small ions give rise to stronger electric fields than large ones so small ions are more extensively 

solvated.

• H+ though small has a very high mobility. According to the Grotthuss mechanism, 
there is an effective motion of a proton that involves the rearrangement
of the protons in a group of water MQs.
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Mobility and conductivity

• ionic conductivity, the contribution of ions of one type to the molar conductivity: 
λ = zuF,

where F=9.648*104 Cmol-1,

the Faraday constant.

• Kohlrausch’s law, Λm = Λm –K c1/2 ion–ion interactions
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Potential difference by Ohm’s law

G = κA/l

Applies for cations & 
anions so solution is in the 
limit at 0 concentration
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Ionic conductivity

• The typical ionic mobility may be estimated as 5.0*10-8 m2V-1s-1.

• If z=1 for both the cation and the anion, what would the typical 
limiting molar conductivity be?

• λ = zuF

• F=9.648*104 Cmol-1
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Answer

• λ = zuF=(5.0*10-8 m2V-1s-1)*(9.648*104 Cmol-1)=

4.8*10-3 m2V-1s-1Cmol-1

J V-1
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Ion-ion interactions

• relaxation effect: the reduction of an ion’s mobility due to distortion of the ionic 
atmosphere.

• electrophoretic effect: the enhanced viscous drag due to the counter current of 
oppositely charged ions.

• Debye–Hückel–Onsager theory: a theory of the concentration dependence of the 
molar conductivity of a strong electrolyte, K = A + BΛm°.

Λm = Λm – Kc1/2
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Ion channel

• passive transport: the tendency for a species to move spontaneously down a concentration or 
potential gradient.

• active transport: transport that must be driven by an exergonic process.

• channel former: a protein that creates a hydrophilic pore in a membrane.

• ion channel: a protein that effects the movement of a specific ion down a potential gradient.

• ion pump: proteins that effect the active transport of ions.

• patch clamp technique: for studying ion transport across biological membranes.

patch clamp technique

K+ channel

71



Einstein relations

• An important relation between s and the thermodynamic force, F, 
acting on any kind of particle is 𝑠 =

𝐷𝐹

𝑅𝑇
.

• An ion in solution has s=uE, in the presence of an electric field of 
strength E, and experiences a F=NAzeE.

• Using NAe=F we get uE=DFzE/RT, so 𝑢 =
𝑧𝐷𝐹

𝑅𝑇
, Einstein relation.

• λ = 𝑧𝑢𝐹 =
𝑧2𝐷𝐹2

𝑅𝑇
, for each type of ion.

• From Λ𝑚
0 = (𝑣+𝑧+

2𝐷+ + 𝑣−𝑧−
2𝐷−)

𝐹2

𝑅𝑇
, Nernst-

Einstein equation.
   vvm

0
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Einstein relations

• u=ez/f and u=zDe/kT relate the mobility in a frictional force and to the 
diffusion coefficient, respectively.

• Combined: 𝐷 =
𝑘𝑇

𝑓
, Stokes-Einstein equation

• Using Stokes’ law: 𝐷 =
𝑘𝑇

6𝜋𝜂𝑎
.
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Mobility and diffusion

• u(SO4
2-)=8.29*10-8 m2V-1s-1.

• Determine the diffusion coefficient at 25 °C.

• u=zDe/kT
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Answer

• D=uRT/zF=(8.29*10-8 m2V-1s-1)*(8.3145 JK-1mol-1)*(298 
K)/{2*(9.649*104 C mol-1)}

J V-1
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Any questions?
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