Solution of the diffusion equation in 1D

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} \quad 0 \leq x \leq \ell \tag{1}
\end{equation*}
$$

1 Steady state

Setting $\partial C / \partial t=0$ we obtain

$$
\frac{d^{2} C}{d x^{2}}=0 \quad \Rightarrow C_{s}=a x+b
$$

We determine a, b from the boundary conditions.

$$
\begin{equation*}
C(0)=C_{1}, \quad C(\ell)=C_{2} \tag{2}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& b=C_{1}, \quad a=\frac{C_{2}-C_{1}}{\ell} \\
& C_{s}(x)=\frac{C_{2}-C_{1}}{\ell} x+C_{1} \\
& \text { Flux }=-D \frac{\partial C_{s}}{\partial x}=\frac{C_{1}-C_{2}}{\ell} \tag{3}
\end{align*}
$$

2 Time-dependent solutions

We choose again the boundary conditions (2) and

$$
\begin{equation*}
C(x, 0)=C_{0}(x) \tag{4}
\end{equation*}
$$

as initial condition. It is convenient to consider the excess quantity

$$
\begin{equation*}
u(x, t)=C(x, t)-C_{s}(x) \tag{5a}
\end{equation*}
$$

Using (1)-(3) we see that u satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}} \tag{5b}
\end{equation*}
$$

with

$$
\begin{align*}
u(0) & =u(\ell)=0 \tag{5c}\\
u(x, 0) & =C_{0}-C_{s}(x) \\
& \equiv u_{0}(x) \tag{5d}
\end{align*}
$$

Let ϕ_{m} be the eigenfunctions of the diffusion operator $d^{2} / d x^{2}$. Since the operator is dissipative, the correponding eigenvalues are non-positive. We denote them by $-k_{m}^{2}(k$ real $)$

$$
\begin{equation*}
\frac{d^{2} \phi_{m}(x)}{d x^{2}}=-k_{m}^{2} \phi_{m}(x) \tag{6}
\end{equation*}
$$

Any function of the form $u=A_{m}(t) \phi_{m}$ satisfies then eq.(5), provided that $A_{m}(t)$ satisfies the ordinary differential equation

$$
\begin{equation*}
\frac{d A_{m}}{d t}=-D k_{m}^{2} A_{m} \tag{7a}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{m}(t)=A_{m}(0) \mathrm{e}^{-D k_{m}^{2} t} \tag{7b}
\end{equation*}
$$

On the other hand, in general, functions u of this form do not satisfy the initial condition. To satisfy this condition we seek for solutions in the form of an infinite series of ϕ_{m} 's (this is legitimate since the equation is linear)

$$
\begin{equation*}
u(x, t)=\sum_{m} A_{m}(t) \phi_{m}(x) \tag{8}
\end{equation*}
$$

and fix the $A_{m}(0)$'s by requiring that

$$
\begin{equation*}
\sum_{m} A_{m}(0) \phi_{m}(x)=u(x, 0)=u_{0}(x) \tag{9}
\end{equation*}
$$

To compute $A_{m}(0)$ we use the orthogonality property of ϕ_{m}, guaranted by the fact that the diffusion operator is self-adjoint :

$$
\begin{align*}
\int_{0}^{\ell} d x \phi_{n}^{*}(x) \phi_{m}(x) & =0 \quad n \neq m \tag{10}\\
& =N_{n} \quad n=m
\end{align*}
$$

Multiplying both sides of (9) by $\phi_{m}^{*}(x)$ and integrating over x we thus obtain

$$
\begin{equation*}
A_{n}(0)=\frac{\int_{0}^{\ell} d x \phi_{n}^{*}(x) u_{0}(x)}{N_{n}} \tag{11}
\end{equation*}
$$

which combined with (7b) and (8) yields the solution

$$
\begin{equation*}
u(x, t)=\sum_{m} \frac{\int_{0}^{\ell} d x \phi_{n}^{*}(x) u_{0}(x)}{N_{m}} \phi_{m}(x) \tag{12}
\end{equation*}
$$

We now compute ϕ_{m} and k_{m} explicitly for the boundary conditions (5b). On inspecting (6) we see that ϕ_{m} must be of the form

$$
\phi_{m}(x)=C \cos k_{m} x+D \sin k_{m} x
$$

Applied to $x=0$ and $x=\ell$ this leads to

$$
\begin{aligned}
& 0=\phi_{m}(0)=C \\
& 0=\phi_{m}(\ell)=D \sin k_{m} \ell
\end{aligned}
$$

implying that $k_{m} \ell=m \pi$ (m integer) or

$$
\begin{align*}
k_{m} & =\frac{m \pi}{\ell} \\
\phi_{m} & =\sin \frac{m \pi x}{\ell} \quad \text { (up to a factor) } \tag{13}
\end{align*}
$$

the full solution $u(x, t)$ being (cf. eq. (12)), with $N_{m}=\ell / 2$

$$
\begin{equation*}
u(x, t)=\sum_{m} \frac{2}{\ell}\left(\int_{o}^{\ell} d x \sin \frac{m \pi x}{\ell} u_{0}(x)\right) \sin \frac{m \pi x}{\ell} \mathrm{e}^{-D \frac{m^{2} \pi^{2}}{\ell^{2}} t} \tag{14}
\end{equation*}
$$

(Fourrier series)
To complete the evaluation suppose that $u_{0}(x)=u_{0}=$ constant, then,

$$
\begin{align*}
u_{0} \int_{0}^{\ell} d x \sin \frac{m \pi x}{\ell} & =0 \quad \text { if } m \text { is even } \\
& =\frac{2 u_{o} \ell}{\pi m} \quad \text { if } m \text { is odd }=2 n+1 \tag{15}
\end{align*}
$$

Finally,

$$
\begin{equation*}
u(x, t)=\frac{4 u_{0}}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1} \mathrm{e}^{-D \frac{(2 n+1)^{2} ? p i^{2}}{\ell^{2}} t} \sin \frac{(2 n+1) \pi x}{\ell} \tag{16}
\end{equation*}
$$

Notice that $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$ with a characteristic time $\bar{t}=\frac{\ell^{2}}{D \pi^{2}}$

