
Solution of the diffusion equation in 1D

∂C

∂t
= D

∂2C

∂x2
0 ≤ x ≤ ` (1)

1 Steady state

Setting ∂C/∂t = 0 we obtain

d2C

dx2
= 0 ⇒ Cs = ax+ b

We determine a, b from the boundary conditions.

C (0) = C1, C (`) = C2 (2)

It follows that

b = C1, a =
C2 − C1

`

Cs (x) =
C2 − C1

`
x+ C1

Flux = −D∂Cs
∂x

=
C1 − C2

`
(3)
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2 Time-dependent solutions

We choose again the boundary conditions (2) and

C (x, 0) = C0 (x) (4)

as initial condition. It is convenient to consider the excess quantity

u (x, t) = C (x, t)− Cs (x) (5a)

Using (1)-(3) we see that u satisfies

∂u

∂t
= D

∂2u

∂x2
(5b)

with

u (0) = u (`) = 0 (5c)

u (x, 0) = C0 − Cs (x)

≡ u0 (x) (5d)

Let φm be the eigenfunctions of the diffusion operator d2/dx2. Since the operator
is dissipative, the correponding eigenvalues are non-positive. We denote them by
−k2

m (k real)

d2φm (x)

dx2
= −k2

mφm (x) (6)

Any function of the form u = Am (t)φm satisfies then eq.(5), provided that Am (t)
satisfies the ordinary differential equation

dAm
dt

= −Dk2
mAm (7a)

or
Am (t) = Am (0) e−Dk

2
mt (7b)

On the other hand, in general, functions u of this form do not satisfy the initial
condition. To satisfy this condition we seek for solutions in the form of an infinite
series of φm’s (this is legitimate since the equation is linear)
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u (x, t) =
∑
m

Am (t)φm (x) (8)

and fix the Am (0)’s by requiring that

∑
m

Am (0)φm (x) = u (x, 0) = u0 (x) (9)

To compute Am (0) we use the orthogonality property of φm, guaranted by the
fact that the diffusion operator is self-adjoint :∫ `

0

dxφ∗n(x)φm(x) = 0 n 6= m (10)

= Nn n = m

Multiplying both sides of (9) by φ∗m(x) and integrating over x we thus obtain

An(0) =

∫ `
0
dxφ∗n(x)u0(x)

Nn

(11)

which combined with (7b) and (8) yields the solution

u(x, t) =
∑
m

∫ `
0
dxφ∗n(x)u0(x)

Nm

φm(x) (12)

We now compute φm and km explicitly for the boundary conditions (5b). On
inspecting (6) we see that φm must be of the form

φm(x) = Ccos kmx+Dsin kmx

Applied to x = 0 and x = ` this leads to

0 = φm(0) = C

0 = φm(`) = Dsin km`
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implying that km` = mπ (m integer) or

km =
mπ

`

φm = sin
mπx

`
(up to a factor) (13)

the full solution u(x, t) being (cf. eq. (12)), with Nm = `/2

u(x, t) =
∑
m

2

`

(∫ `

o

dxsin
mπx

`
u0(x)

)
sin

mπx

`
e−D

m2π2

`2
t (14)

(Fourrier series)

To complete the evaluation suppose that u0(x) = u0 = constant, then,

u0

∫ `

0

dxsin
mπx

`
= 0 if m is even

=
2uo`

πm
if m is odd = 2n+ 1 (15)

Finally,

u(x, t) =
4u0

π

∞∑
n=0

1

2n+ 1
e−D

(2n+1)2?pi2

`2
tsin

(2n+ 1)πx

`
(16)

Notice that u(x, t)→ 0 as t→∞ with a characteristic time t̄ = `2

Dπ2
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