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Course work

• Mark

• Deadline
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Recap – physical equilibria and phase diagrams
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Objectives

• Ideal mixtures

• Raoult’s law

• Henry’s law

• Colligative properties

• Real solutions
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Ideal mixtures

• Mixtures are a hugely important aspect of chemical processes
• Chemical reactions start when reactants are mixed and products are also 

typically mixtures.

• Even mixtures of unreactive substances are important, cf. the presence of a 
solute may affect their physical properties (example?)

• The key idea is that changes in the TD properties on mixing of 
substances are established through the consideration of how μ of 
each component changes with composition.

• You need to know what μ is, and how G varies with T and p.
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Mixing perfect gases

• Gibbs energy of mixing:
• Amounts of 2 perfect gases in 2 containers: nA & nB

• They both are at T & p.

• Their μ have their ‘pure’ values, 𝐺𝑚 𝑝 = 𝐺𝑚
∅ + 𝑅𝑇 ln(𝑝/𝑝∅) (perfect gas) and μJ=Gm(J)

• For each J gas: 𝜇𝐽 = 𝜇𝐽
∅ + 𝑅𝑇 ln 𝑝/𝑝∅, 𝜇𝐽

∅ - std chemical potential, i.e. μ of pure gas J at 1 bar.

• The initial total G for the total system is given by G=nAμA+nBμB as 𝐺𝑖 = 𝑛𝐴 𝜇𝐴
∅ + 𝑅𝑇 ln 𝑝/𝑝∅ +

𝑛𝐵 𝜇𝐵
∅ + 𝑅𝑇 ln 𝑝/𝑝∅ .

• After mixing, the partial pressure of gases are pA and pB with pA+pB=p, the total G changes to 𝐺𝑓 =

𝑛𝐴 𝜇𝐴
∅ + 𝑅𝑇 ln 𝑝𝐴/𝑝

∅ + 𝑛𝐵 𝜇𝐵
∅ + 𝑅𝑇 ln 𝑝𝐵/𝑝

∅ .

• The difference of Gf and Gi is the Gibbs energy of mixing; 

∆𝑚𝑖𝑥𝐺 = 𝑛𝐴𝑅𝑇 ln
𝑝𝐴
𝑝
+ 𝑛𝐵𝑅𝑇 ln

𝑝𝐵
𝑝
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ΔmixG

• ∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇(𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵), x-mole fraction

• x≤1 → logs are negative → ΔmixG<0, i.e. mixing of perfect gases is 
always spontaneous.
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Calculating the Gibbs energy of mixing

• Container at 25 °C divided into 2 equal parts contains:

• Calculate the Gibbs energy of the mixing 
• assuming perfect behaviour

• Hint: Note that initial pressures are different.

• Calculate μs then G for the system

• Use 𝐺 = 𝑛𝐴 𝜇𝐴
∅ + 𝑅𝑇 ln 𝑝/𝑝∅ + 𝑛𝐵 𝜇𝐵

∅ + 𝑅𝑇 ln 𝑝/𝑝∅

3.0 mol H2 3p 1.0 mol N2 p

3.0 mol H2 1.0 mol N2 2p
p(H2)=3/2p p(N2)=1/2p
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Calculating the Gibbs energy of mixing

• 𝐺𝑖 = 3.0 mol 𝜇∅ H2 + 𝑅𝑇 ln
3𝑝

𝑝∅
+ 1.0 mol 𝜇∅ N2 + 𝑅𝑇 ln

𝑝

𝑝∅

• When the partition is removed the partial pressure of H2 falls to 3/2 p and that of 
N2 to 1/2 p

• 𝐺𝑓 = 3.0 mol 𝜇∅ H2 + 𝑅𝑇 ln
3𝑝

2𝑝∅
+ 1.0 mol 𝜇∅ N2 + 𝑅𝑇 ln

𝑝

2𝑝∅

• ∆𝑚𝑖𝑥𝐺 = 3.0 mol RT ln
3

2
𝑝

3𝑝
+ 1.0 mol RT ln

1

2
𝑝

𝑝
= − 3.0 mol RT ln 2 −

1.0 mol RT ln 2 = − 4.0 mol RT ln 2 = −6.9 kJ

• The mixing energy is the sum of two contributions; mixing itself and the changes 
in pressure.
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Entropy and enthalpy of mixing

• ∆𝑚𝑖𝑥𝑆 = −
𝜕∆𝑚𝑖𝑥𝐺

𝜕𝑇
, sub ∆𝑚𝑖𝑥𝐺 =

𝑛𝑅𝑇(𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵)

• ∆𝑚𝑖𝑥𝑆 = −𝑛𝑅(𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵), it 
follows that ΔmixS>0.

• ∆𝐺 = ∆𝐻 − 𝑇∆𝑆.

• ∆𝑚𝑖𝑥𝐻 = 0.
• This should be expected from a system in which 

there are no interactions between the MQs.

• The driving force therefore is the entropy.
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Mixing of liquids

• How G varies w composition. To calculate its value we make use of μ of a substance 
present as a vapour being the same as that as a liquid in equilibrium.

• Chemical potential of pure A: μA* and μA*(l) for a liquid; vapour pressure of pure liquid is 
p*A.

• 𝐺𝑚 𝑝 = 𝐺𝑚
∅ + 𝑅𝑇 ln 𝑝/𝑝∅, with μ=Gm

• 𝜇𝐴
∗ 𝑙 = 𝜇𝐴

∅ + 𝑅𝑇 ln 𝑝𝐴
∗/𝑝∅. If another substances is added A is no longer pure, i.e.

𝜇𝐴 𝑙 = 𝜇𝐴
∅ + 𝑅𝑇 ln 𝑝𝐴/𝑝

∅, as the vapour and solvent are still in equilibrium.

• To eliminate 𝜇𝐴
∅ we combine them as 𝜇𝐴 𝑙 = 𝜇𝐴

∗ 𝑙 − 𝑅𝑇 ln
𝑝𝐴
∗

𝑝∅
+ 𝑅𝑇 ln

𝑝𝐴

𝑝∅
= 𝜇𝐴

∗ 𝑙 +

𝑅𝑇 ln
𝑝𝐴

𝑝𝐴
∗ .
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Raoult’s law

• 𝜇𝐴 𝑙 = 𝜇𝐴
∗ 𝑙 + 𝑅𝑇 ln

𝑝𝐴

𝑝𝐴
∗

• Considering that the ratio of vapour pressures and the composition of 

the liquid, François Raoult found that 
𝑝𝐴(𝑔)

𝑝𝐴
∗ ≈ 𝑥𝐴(𝑙).

• Raoult’s law: 𝑝𝐴 = 𝑥𝐴 ∗ 𝑝𝐴
∗ .

• Mixtures that obey Raoult’s law are ideal solutions.

• It is a good estimate for dilute solutions.
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Raoult’s law

• The vapour pressure of benzene at 20 °C is 75 Torr (9999.18 Pa) and 
that of methylbenzene is 21 Torr (2799.77 Pa) at the same T.

• In an equimolar mixture, i.e. xbenzene=xmethylbenzene=1/2, calculate the 
partial pressures of the two components.
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Answer

• pbenzene=1/2*75 Torr = 38 Torr

• pmethylbenzene=1/2*21 Torr = 11 Torr.

• The total vapour pressure of the mixture is 49 Torr.

• The mole fractions of the in the vapour are xvap,benzene=38 Torr/49 Torr

• As the partial pressure of a gas J is defined as pJ=xJp, xvap,benzene=(38
Torr)/(49 Torr)=0.78, and xvap,methylbenzene=(11 Torr)/(49 Torr)=0.22.

• i.e. xA+xB=1.
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Origin of Raoult’s law

• Effect of the solute on the entropy of the solution.

• In a pure solvent the MQs have a certain disorder and corresponding 
S, with pvap representing the tendency of the system and its 
surroundings to reach higher S.

• When a solute is present, the solution has a greater disorder, i.e. ↑S 
(vis-à-vis pure solvent), the solution has a lower tendency to acquire 
an even higher S by vaporisation, i.e. its pvap↓.
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Henry’s law

• In an ideal solution both solute and solvent obey Raoult’s law.

• However, for real solutions at low c, William Henry found that 
although pvap(solute) α x(solute), the constant of proportionality is 
not the pvap of the pure substance p*.

• Henry’s law: pB=xBKB, where KB is an empirical constant.
• In practice polynomial data fitting is applied.

• In terms of molality: pB=bBKB.
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Origin of Henry’s law

• Mixtures in which the solvent obeys Raoult’s law and 
the solute Henry’s law are called ideal-dilute 
solutions.

• The difference in behaviour between of the solute and 
solvent arises from the fact that in a dilute solution 
the solvent MQs are very much in a surrounding as in 
the pure liquid, whereas the solute MQs are 
surrounded by solvent MQs.

• The solvent behaves like a slightly modified pure 
solvent but the solute behaves entirely differently 
from its pure state.
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Thermodynamics of ideal solutions

• G of mixing 2 liquids to form an ideal solution is calculated in the same way 
as for 2 gases; 𝐺𝑖 = 𝑛𝐴𝜇𝐴

∗ + 𝑛𝐵𝜇𝐵
∗ before mixing and 𝐺𝑓 = 𝑛𝐴(𝜇𝐴

∗ +
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Colligative properties

• Colligative properties of solutions depend only on the number of 
solute particles, result from the effect of the solute on the μ of the 
solvent.

• Remember the concept of μ and its role as a criterion of equilibrium 
between phases.

• The presence of a solute modifies the physical properties of the 
solvent, cf. pvap, Tboil, Tmelt.

• It also introduces a new property; the osmotic pressure.

• In dilute solutions these properties only depend on he # of solute 
particles, not their nature, whence the name colligative properties.
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The origin of colligative properties

• Stem from the reduction of μ(l) as a result of the 
presence of solute.

• For an ideal-dilute solution the reduction is from 
𝜇𝐴
∗ of the pure solvent to 𝜇𝐴

∗ + 𝑅𝑇 ln 𝑥𝐴 when a 
solute is present 

(N.B. 𝑅𝑇 ln 𝑥𝐴 < 0 as 𝑥𝐴 < 1).

• Solute is assumed to be non-volatile and insoluble 
in the solid solvent so it is only present in the liquid 
phase, i.e. no direct influence on μ.

• ↓μ implies that liquid-vapour equilibrium occurs 
at ↑T and the solid-liquid equilibrium at ↓T.
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The molecular origin of colligative properties

• ↓μ - effect of the solute on the entropy of the solution.

• Pure liquid solvent has a characteristic S and its pvap reflects the 
tendency of the system towards greater S, which may be achieved 
through the vaporisation of the liquid.

• When a solute is present the additional contribution to the S of the 
liquid results in a weaker tendency for vaporisation.

• ↓pvap(solvent) and ↑Tboil.

• Similarly, the enhanced MQlar randomness of the solution opposes 
the tendency to freeze →↓Tmelt.
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Illustration of the vapour pressure change in 
solutions

If vessel closed: pA* pA
22



TD analysis of the depression of the freezing 
point and elevation of the boiling point
• ∆𝑇𝑓 = 𝐾𝑓𝑏, b – molality of the solute, Kf - cryoscopic constant

• ∆𝑇𝑏 = 𝐾𝑏𝑏, Kb - ebullioscopic constant

• Importance is rather small.

• When assessing colligative properties we focus on the solute particles 
present, not their identity.

• When solute is ionic it gives rise to both cationic and anionic solutes.
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Cryoscopic and ebullioscopic effects

• For water as solvent Kf=1.86 K kg mol-1 and Kb=0.513 K kg mol-1.

• Therefore in solution in which the molality of a non-electrolyte (cf. 
glucose) is 0.10 mol kg-1.

• Determine the extent of freezing point depression and boiling point 
elevation in the above system.
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Answer

• ΔTf=(1.86 K kg mol-1)*(0.10 mol kg-1) = 0.19 K

• ΔTb=(0.513 K kg mol-1)*(0.10 mol kg-1)= 0.051 K.
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Application: freezing point depression

• Antifreeze in engines

• Antifreeze is used in much higher concentration that can justify its 
effect as a colligative property.
• Use of salt on highways

• Its effect is to interfere with the solidification of water MQs.
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Osmosis

• The only colligative property of real importance is 
osmosis, the spontaneous passage of a pure 
solvent into a solution separated from it by a 
semipermeable membrane.

• The osmotic pressure, Π, is the pressure that must 
be applied to the solution to stop the influx of 
solvent.

• Important examples of osmosis include the 
transport of fluids through cell membranes, 
dialysis, osmometry (determination of molar mass 
by Π measurement), and energy generation.
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Osmotic pressure

• In measuring Π, opposing pressure arises from the column of the 
solution that the osmosis itself produces.

• Equilibrium is reached when the hydrostatic pressure of the column 
of solution matches Π.

• Complication arises from the solvent entering the solution results in 
its dilution.
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TD treatment of osmosis: The van’t Hoff 
equation
• At equilibrium, μ(solvent) must be the same on each side of the membrane.

• ↓ μ(solvent) by the solute but it is restored to its ‘pure’ value by the application of p.

• On the pure solvent side, at p pressure the μ is 𝜇𝐴
∗ (𝑝).

• On the solution side, μ is lowered by the presence of the solute, which reduces the molar 
fraction of the solvent from 1 to xA.

• The chemical potential of A is raised on account of the greater pressure, p+Π, that the 
solution experiences.

• At equilibrium, μ of A is the same on both sides: 𝜇𝐴
∗ 𝑝 = 𝜇𝐴 𝑥𝐴, 𝑝 + 𝜋

• The presence of solute is taken into account as: 𝜇𝐴 𝑥𝐴, 𝑝 + 𝜋 = 𝜇𝐴
∗ 𝑝 + 𝜋 + 𝑅𝑇 ln 𝑥𝐴.
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The van’t Hoff equation

• As 
𝜕𝜇𝐴

𝜕𝑝 𝑇
= 𝑉𝐴,𝑚 for pure A we can write d𝜇𝐴=𝑉𝐴,𝑚dp, and on integration we obtain: 𝜇𝐴

∗ 𝑝 + 𝜋 = 𝜇𝐴
∗ 𝑝 +

𝑝׬
𝑝+𝜋

𝑉𝑚 d𝑝, where Vm is the molar volume of the pure solvent A.

• We can assume this to be negligibly different from its partial volume, 𝑉𝐴,𝑚 and combine the above equations 

to −𝑅𝑇 ln 𝑥𝐴 = 𝑝׬
𝑝+𝜋

𝑉𝑚 d𝑝.

• This enables the calculation of the additional pressure, Π, that must be applied to restore μ of the solvent to 
its pure value and thus restore the equilibrium across the membrane.

• For dilute solutions ln 𝑥𝐴 = ln(1 − 𝑥𝐵) ≈ −𝑥𝐵.

• We may also assume that the pressure range on integration is so small that Vm is constant, so it may be taken 
outside of the integral giving 𝑅𝑇𝑥𝐵 = 𝜋𝑉𝑚.

• When solution is dilute, 𝑥𝐵 ≈ 𝑛𝐵/𝑛𝐴 and as 𝑛𝐴𝑉𝑚 = 𝑉, we get 

• Π=[B]RT, the van’t Hoff equation, where [B]=nB/V, is the molar concentration of the solute.

30



The van’t Hoff equation

• We saw previously that 0.10 mol kg-1 non-electrolyte solution only 
has tiny effects on the freezing and boiling points of water.

• Calculate the osmotic pressure of the same solution at 25 °C, 
assuming that the molar concentration is 0.10 mol dm-3, 
corresponding to 1.0*102 mol m-3. [1 J m-3=1 Pa]

• What height would this osmotic pressure drive water?
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Answer

• Π=(1.0*102 mol m-3)*(8.3145 J K-1 mol-1)*(298 K)=2.5*105 J m-3.

• i.e. 2.5 bar

• This would drive water to a height of 25 m.
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Real solutions

• In real solutions the intermolecular and interionic interactions need to be taken into 
account to describe their TD properties accurately.

• In ideal solutions A-A, A-B and B-B interactions, where A denotes the solvent and B the 
solute, were all considered to be the same.

• In the case of real solutions however these interactions may differ, cf. ΔH and ΔV on 
mixing, S contribution.

• If ΔH is large and +ve, or if ΔS is adverse (i.e. the re-organisation of the MQs results in an 
orderly mix, any ideas what this may look like?), ΔG will be +ve, i.e. the separation of the 
mix will be spontaneous and the liquids are immiscible.

• Liquids may be partially miscible, i.e. miscible over a certain range of compositions.
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Activities

• Real solutions differ from ideal solutions as a result of differences in 
the intermolecular interactions between their components and how 
the MQs aggregate.

• These differences are taken into account by replacing the 
concentrations in expression for μ by effective concentrations known 
as activities.
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Solvent activity

• Consider 𝜇𝐴 𝑙 = 𝜇𝐴
∗ + 𝑅𝑇 ln 𝑝𝐴/𝑝𝐴

∗ , where 𝑝𝐴
∗ is the vapour pressure of 

pure A and 𝑝𝐴 is the vapour pressure of A when it is a component of the 
solution.

• For an ideal solution the solvent obeys Raoult’s law at all concentrations 
and we can express this as 𝜇𝐴 = 𝜇𝐴

∗ + 𝑅𝑇 ln 𝑥𝐴.

• Even if the solution does not obey Raoult’s law the above formalism may 
be preserved as 𝜇𝐴 = 𝜇𝐴

∗ + 𝑅𝑇 ln 𝑎𝐴, where 𝑎𝐴 denotes the solvent 
activity, a kind of an ‘effective’ mole fraction.

• As equation is true both for ideal and non-ideal solutions 𝑎𝐴 = 𝑝𝐴/𝑝𝐴
∗ .

• It follows that the activity of a pure substance is 1.
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Solvent activity

• The vapour pressure of 0.500 M KNO3 (aq) at 100 °C (when the 
vapour pressure of water is 1 atm, i.e. 101.3 kPa) is 99.95 kPa.

• What is the activity of water in the above solution at this 
temperature?
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Answer

• aA=(99.95 kPa)/(101.3 kPa) = 0.9867
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Solvent activity

• Because all solvents obey Raoult’s law (𝑝𝐴/𝑝𝐴
∗ = 𝑥𝐴) increasingly 

closely as the concentration of solute →0, the aA→xA as xA→1.

• To express this we introduce the activity coefficient, γ: 𝑎𝐴 = 𝛾𝐴𝑥𝐴; 𝛾𝐴
→1 as xA→1 at all T and p.

• μ of the solvent is: 𝜇𝐴 = 𝜇𝐴
∗ + 𝑅𝑇 ln 𝑎𝐴 = 𝜇𝐴

∗ + 𝑅𝑇 ln 𝑥𝐴 + 𝑅𝑇 ln 𝛾𝐴, 
and all deviation from ideal may be expressed in the term.

• The std state of the solvent, the pure liquid solvent at 1 bar, is 
established when xA=1.
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Solute activity

• The problem with defining activity coefficients & std states for solutes is 
that they approach ideal—dilute behaviour (Henry’s law) as xB→0, not 1.

• The vapour pressure of a solute B that satisfies Henry’s law is given by 
pB=KBxB, where KB is an empirical constant.

• From the general expression 𝜇𝐵 = 𝜇𝐵
∗ + 𝑅𝑇 ln 𝑝𝐵/𝑝𝐵

∗ , we get 𝜇𝐵 = 𝜇𝐵
∗ +

𝑅𝑇 ln
𝐾𝐵𝑥𝐵

𝑝𝐵
∗ = 𝜇𝐵

∗ + 𝑅𝑇 ln
𝐾𝐵

𝑝𝐵
∗ + 𝑅𝑇 ln 𝑥𝐵. 

• Both 𝐾𝐵 and 𝑝𝐵
∗ are characteristics of the solute independent of its 

abundance, so term may be combined with term to give a new std μ, 𝜇𝐵
∅ =

𝜇𝐵
∗ + 𝑅𝑇 ln

𝐾𝐵

𝑝𝐵
∗ , i.e. the std chemical potential of the solute.
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Solute activity

• If the solution is ideal 𝐾𝐵 = 𝑝𝐵
∗ so 𝜇𝐵

∅ = 𝜇𝐵
∗ . μB in an ideal dilute 

solution therefore is 𝜇𝐵 = 𝜇𝐵
∅ + 𝑅𝑇 ln 𝑥𝐵.

• If we deviate from the ideal-dilute behaviour we get 𝜇𝐵 = 𝜇𝐵
∅ +

𝑅𝑇 ln 𝑎𝐵.

• As the std state remains unchanged, all deviations from ‘ideal’ are 
captured in aB, obtained as 𝑎𝐵 = 𝑝𝐵/𝐾𝐵.

• We introduce the activity coefficient: 𝑎𝐵 = 𝛾𝐵𝑥𝐵, so all deviations 
from ‘ideal’ to be captured in γB. (𝜇𝐵 = 𝜇𝐵

∅ + 𝑅𝑇 ln 𝑥𝐵 + 𝑅𝑇 ln 𝛾𝐵)

• Because all solute obeys Henry’s law as its concentration xB → 0, 
aB→xB and γB→1 as xB→0.
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Model system: regular solutions

• TD properties of real solutions are normally expressed in terms of excess 
function, XE, i.e. the difference between the observed TD function of mixing & the 
function for an ideal solution;

SE=ΔmixS-ΔmixS
ideal, where ΔmixS

ideal=-nR(xAlnxA+xBlnxB).

• HE & 𝑉𝑚𝑖𝑥
𝐸 both = observed H & Vmix, as the ideal values are 0. Deviations from 0 

indicate the extent to which the solutions are not ideal.

• In this connection a useful model system is the regular solution, for which HE≠0 
and SE=0.

• 2 kinds of MQs are distributed randomly, as in an ideal solution, but have different 
interaction energies.
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Regular solutions

• Quantitative expression of regular solution model: HE=nξRTxAxB, 
where ξ is a dimensionless parameter that is a measure of the 
energy of the A-B interactions relative to the A-A and B-B 
interactions. For an ideal solution ξ=0.

• If ξ<0: mixing is exothermic
• solute-solvent are more favourable than solvent-solvent and solute-solute 

ones

• if ξ>0: mixing is endothermic.

• As, for a regular solution, the ΔSmix has its ideal value, excess 
Gibbs energy=excess enthalpy; ΔmixG=nRT(xAlnxA+xBlnxB+ξxAxB), 
with xB=1-xA.

42
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Regular solutions

• When xA=xB=1/2, the excess enthalpy is HE/n=1/4ξRT (molar).

• Determine ξ for the benzene-cyclohexane mixture.
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Answer

• As HE is ca. 700 J (from the graph), using HE=1/4ξRT we can express ξ=
4*HE/(RT)=(4*700 J mol-1)/(8.314 J K-1 mol-1 * 298 K)=1.13
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Regular solutions

• ΔmixG varies with composition for different ξ.
• For ξ>2 ∃ 2 minima separated by a maximum. This implies that for ξ>2 the 

system will spontaneously separate into 2 phases with compositions 
corresponding to the 2 minima.

• The concentration of the 2 phases are given by using the expression 
ln

𝑥𝐴

1−𝑥𝐴
+ ξ 1 − 2𝑥𝐴 = 0. (This can also be extended to determine Tuc).

• We will see how the concept of a regular solution gives further insight 
into the origin of deviations from Raoult’s law and its relation to γ.

• For a regular solution modelled by the parameter ξ the activity 
coefficients are given by the Margules equations:

ln 𝛾𝑎 = ξ𝑥𝐵
2 and ln 𝛾𝐵 = ξ𝑥𝐴

2

45

ξ



Margules equations

• ∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇(𝑥𝐴 ln 𝑎𝐴 + 𝑥𝐵 ln 𝑎𝐵) for non-ideal solutions

• As ai=xiγi: ∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇 𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵 + 𝑥𝐴 ln 𝛾𝐴 + 𝑥𝐵 ln 𝛾𝐵

• Using the Margules equations and as xA+xB=1: 

∆𝑚𝑖𝑥𝐺 = 𝑛𝑅𝑇 𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵 + ξ𝑥𝐴𝑥𝐵
2 + ξ𝑥𝐵𝑥𝐴

2 =
𝑛𝑅𝑇 𝑥𝐴 ln 𝑥𝐴 + 𝑥𝐵 ln 𝑥𝐵 + ξ𝑥𝐴𝑥𝐵(𝑥𝐵 + 𝑥𝐴) = 𝑛𝑅𝑇(𝑥𝐴 ln 𝑥𝐴 +
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Vapour pressure of regular solutions

• As aA is the ratio for the vapour pressure of A in the solution to the 

vapour pressure of pure A: 𝑝𝐴 = 𝑎𝐴𝑝𝐴
∗ = 𝑒ξ(1−𝑥𝐴)

2
𝑥𝐴 𝑝𝐴

∗ .
• ξ=0, i.e. ideal solution, this corresponds to a linear function.

• ξ>0 (endothermic mixture): vapour pressure>ideal

• ξ<0 (exothermic mixture): vapour pressure<ideal

• As xA→1 (pure substance) the functions also become more linear, in 
accordance with Raoult’s law.

• When xA<<1 𝑝𝐴 → 𝑥𝐴𝑒
ξ𝑝𝐴

∗ . This expression has the form of Henry’s law when 
𝐾 = 𝑒ξ𝑝𝐴

∗ , which is different to each solute-solvent system.
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Vapour pressure of regular solutions

• The vapour pressure of benzene at 25 °C is 13.8 kPa.

• For a mixture of benzene and cyclohexane at the above temperature 
we know that ξ=1.13. 

• Calculate the value of Henry’s law constant for benzene in this 
mixture.
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Answer

• K=e1.13*13.8 kPa = 42.7 kPa
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Model system: ionic solutions

• Solutions of ionic compounds are central to much of the chemical industry.

• The Coulombic interactions are so strong that the approximation of replacing 
activities by mole fractions or molalities is only valid in very dilute solutions.

• We need to pay attention to the activities of ions in solution.

• !μ+ - μ of cation M+ and μ- - μ of anion X-

• 𝐺𝑚
𝑖𝑑𝑒𝑎𝑙 = 𝜇+

𝑖𝑑𝑒𝑎𝑙 + 𝜇−
𝑖𝑑𝑒𝑎𝑙

• For a real solution in which M+ and X- are the same molality (think of NaCl).

• 𝐺𝑚 = 𝜇+ + 𝜇− = 𝜇+
𝑖𝑑𝑒𝑎𝑙 + 𝜇−

𝑖𝑑𝑒𝑎𝑙 + 𝑅𝑇 ln 𝛾+ + 𝑅𝑇 ln 𝛾− = 𝐺𝑚
𝑖𝑑𝑒𝑎𝑙 + 𝑅𝑇 ln 𝛾+𝛾−, 

all the deviations from ‘ideal’ are in the term.
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Mean activity coefficient

• Experimentally 𝛾+𝛾− cannot be separated into cationic and anionic contributions. 
Therefore, for an electrolyte of MX we can introduce the mean activity 

coefficient, 𝛾± = 𝛾+𝛾−
1/2.

• 𝜇+ = 𝜇+
𝑖𝑑𝑒𝑎𝑙 + RT ln 𝛾± and 𝜇− = 𝜇−

𝑖𝑑𝑒𝑎𝑙 + RT ln 𝛾±

• In general, for a compound of MpXq: 𝐺𝑚 = 𝑝𝜇+ + 𝑞𝜇− = 𝐺𝑚
𝑖𝑑𝑒𝑎𝑙 + 𝑝𝑅𝑇 ln 𝛾+ +

𝑞𝑅𝑇 ln 𝛾−

• With the introduction of the mean activity coefficient: 𝛾± = (𝛾+
𝑝
𝛾−
𝑞)1/𝑠; 𝑠 = 𝑝 +

𝑞

• 𝜇𝑖 = 𝜇𝑖
𝑖𝑑𝑒𝑎𝑙 + RT ln 𝛾±, mean ionic chemical potential
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Mean activity coefficient

• In a certain solution of CaCl2, the activity coefficient of the Ca2+ and 
Cl- ions were calculated as 0.874 and 0.981, respectively.

• What are p, q and s for this solute?

• What is the mean activity coefficient?
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Answer

• p=1; q=2 and s=3.

• γ±={(0.874)(0.981)2}1/3 = 0.944
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The Debye-Hückel theory

• The long range and strength of Coulombic interactions between ions mean 
that this is likely to be the primary reason for any departure from ‘ideal’ in 
ionic solutions and to dominate all further contributions to ‘non-ideal’.

• This domination is the basis of the Debye-Hückel theory.
• Oppositely charged ions attract each other → anions are more likely found near 

cations and vice versa.

• Overall, the solution is neutral but near any ion there is an excess of counter-ions, so 
averaged on time, counter-ions are likely to be found around any given ion.

• This time averaged spherical haze around the central ion has a magnitude equal but 
of opposite charge to the central ion’s, and it is called ionic atmosphere.

• G & μ therefore ↓ because of these interactions
• We look at the departure of Gm from 𝐺𝑚

𝑖𝑑𝑒𝑎𝑙, which is identified with RT ln 𝛾±.
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Debye-Hückel limiting law

• At very low concentrations the activity may be therefore calculated 

from the Debye-Hückel limiting law: log 𝛾± = − 𝑧+𝑧− 𝐴𝐼
1

2, where 
A=0.509 for aqueous solutions at 25 °C and I is the dimensionless 

ionic strength of the solution, 𝐼 =
1

2
σ𝑖 𝑧𝑖

2𝑏𝑖/𝑏
∅, zi – charge # of ion i, 

bi – molality of ion i, and 𝑏∅ = 1 mol kg-1.

• The sum extends over all the ions present in the solution. 

• For a solution of 2 types of ions at molalities of b+ and b-, 𝐼 =
1

2
(𝑏+𝑧+

2 + 𝑏−𝑧−
2)/𝑏∅.
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Ionic strength

• Calculate the mean activity coefficient of 5.0 mmol kg-1 KCl(aq) at 25 
°C. 
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Answer

• 𝐼 =
1

2
(𝑏+𝑧+

2 + 𝑏−𝑧−
2)/𝑏∅; z+=z-=1

• I=1/2(b++b-)/b°=b/b°, where b is the molality of the solution (and 
b++b-=b).

• log γ±=-0.509*(5.0*10-3)1/2 = -0.036

• γ± = 0.92.
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Davies equation

• Ionic solutions of moderate molalities may have coefficients that 

differ from the values given by log 𝛾± = − 𝑧+𝑧− 𝐴𝐼
1

2, yet all solutions 
are expected to conform as b→0.

• When I of the solution is too high for the limiting law to be valid, the 
activity coefficient may be estimated by the Davies eq.: 

log 𝛾± = −
𝐴 𝑧+𝑧− 𝐼

1
2

1+𝐵𝐼
1
2

+ 𝐶𝐼, where A, B and C are dimensionless 

constants.
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Summary of phase equilibria in gas-liquid 
systems
• As the upper limit of mass transfer is restricted by the relevant phase 

equilibrium and the dependence of the rate of mass transfer on the phase 
equilibrium – must be familiar with phase equilibria of systems.

• Solubility of gases in liquids: ↑ w p↑ and ↓ w T↑
• 𝑝𝑖 = 𝐾𝑖𝑥𝑖 (Ki – Henry’s constant)
• Think of entropy!

• Vapour pressure of pure liquids: function only of T
• log 𝑝∗ = 𝐴 −

𝐵

𝑇+𝐶
, where A, B and C are constants

• Vapour pressure of solutions
• Raoult’s law: 𝑝𝑖 = 𝑝𝑖

∗𝑥𝑖 - ideal solutions
• Non-ideal solutions: 𝑝𝑖 = 𝑝𝑖

∗𝛾𝑖𝑥𝑖, where γi – activity coefficient of species i.
• The estimation of γi is one of the important subjects in chemical engineering.
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Any questions?
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