
Chaos & Fractals

Solutions 1

(A) Suppose the map f : R → R is defined by f(x) = x2 − 6x+ 10.

Exercise 1. Draw the graph of the map f , and determine all its fixed points. Determine
which of these points are attracting and which of these points are repelling.

Fixed points satisfy f(x) = x, so x2 − 6x+ 10 = x, so x2 − 7x+ 10 = 0, so x = 2
and x = 5 are the fixed points.
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Note that f ′(x) = 2x − 6, so the multipliers at the fixed points are f ′(2) = −2,
and f ′(5) = 4; both these multipliers have modulus strictly larger than 1, so both fixed
points are repelling.

Exercise 2. For the map f , determine an eventually fixed point which is not a fixed
point.

The point 1 is an example of an eventually fixed point (there are infinitely many
other examples), since f(1) = 5.

Exercise 3. Draw a graph of the map f 2. Determine all the points of least period 2 of f .
Determine which of these points are attracting and which of these points are repelling.



Points of period 2 satisfy f 2(x) = x, so

(x2 − 6x+ 10)2 − 6(x2 − 6x+ 10) + 10 = x ,

in other words
x4 − 12x3 + 50x2 − 85x+ 50 = 0 .

We know that the two fixed points also have period 2, so we know that x2 − 7x+10 =
(x− 2)(x− 5) is a factor of the above righthand side, so we can factorise it to give the
equation

(x− 2)(x− 5)(x2 − 5x+ 5) = 0 ,

so the two roots of x2 − 5x+ 5, namely (5±
√
5)/2, are points of least period 2.
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The multiplier of the 2-cycle {(5 +
√
5)/2, (5−

√
5)/2} is equal to

f ′((5 +
√
5)/2)f ′((5−

√
5)/2) ,

and since f ′(x) = 2x−6 then f ′((5+
√
5)/2) = −1+

√
5 and f ′((5−

√
5)/2) = −1−

√
5

so
|f ′((5 +

√
5)/2)f ′((5−

√
5)/2)| = |1− 5| = | − 4| > 1 ,

therefore the 2-cycle is repelling.



(B) Now suppose the map f : R → R is defined by f(x) = x2 − 7/4.

Exercise 4. Draw the graph of the map f , and determine all its fixed points. Determine
which of these points are attracting and which of these points are repelling.

Fixed points satisfy f(x) = x, so x2 − x − 7/4 = 0, so x = (1 +
√
8)/2 and

x = (1−
√
8)/2 are the two fixed points.
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The multipliers at these fixed points are f ′((1 +
√
8)/2) = 1 +

√
8 and f ′((1 −√

8)/2) = 1 −
√
8, both of which have modulus strictly larger than 1, so both fixed

points are repelling.

Exercise 5. For the map f , determine an eventually fixed point which is not a fixed
point.

One eventually fixed point is −(1 +
√
8)/2, since f(−(1 +

√
8)/2) = (1 +

√
8)/2.

Exercise 6. Draw a graph of the map f 2. Determine all the points of least period 2 of f .
Determine which of these points are attracting and which of these points are repelling.

Points of period 2 satisfy f 2(x) = x, so

(x2 − 7/4)2 − 7/4 = x ,

which can be written as

(x2 − x− 7/4)(x− 1/2)(x+ 3/2) = 0 ,

so the points of least period 2 are 1/2 and −3/2.
Now f ′(1/2) = 1 and f ′(−3/2) = −3, so the multiplier for the 2-cycle {1/2,−3/2}

is
f ′(1/2)f ′(−3/2) = −3 ,

which is greater than 1 in modulus, so this 2-cycle is repelling.
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(C) Now suppose the map f : R → R is defined by

f(x) =

{
x+ 1/2 for x < 0

−2x+ 1/2 for x ≥ 0 .

Exercise 7. Draw the graph of the map f , and determine all its fixed points. Determine
which of these points are attracting and which of these points are repelling.

Fixed points satisfy f(x) = x. There are no such points x < 0, since x + 1/2 = x
has no solutions. There is one solution x > 0, namely the solution to −2x + 1/2 = x,
namely x = 1/6 is the unique fixed point.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Since |f ′(1/6)| = | − 2| = 2 > 1 then this fixed point is repelling.



Exercise 8. For the map f , determine an eventually fixed point which is not a fixed
point.

The point −1/3 = 1/6 − 1/2 satisfies f(−1/3) = 1/6, so −1/3 is an eventually
fixed point. Note, for example, that more generally 1/6−n/2 is an eventually fixed point
for all natural numbers n.

Exercise 9. Draw a graph of the map f 2. Determine all the points of least period 2 of f .
Determine which of these points are attracting and which of these points are repelling.

Period-2 points x satisfy f 2(x) = x. If x ≤ −1/2 then f 2(x) = x+ 1 ̸= x, so such
an x cannot have period 2. If x ∈ (−1/2, 0) then

f 2(x) = f(x+ 1/2) = −2(x+ 1/2) + 1/2 = −2x− 1/2 ,

so f 2(x) = x means −1/2 = 3x, so x = −1/6. Note that f(−1/6) = 1/3, so
{−1/6, 1/3} is a 2-cycle. In fact it is easily seen that it is the only 2-cycle (see e.g. that
by inspection of the graph of f 2 there are 3 solutions to f 2(x) = x, namely the fixed
point 1/6, and the two period-2 points −1/6 and 1/3).
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The 2-cycle {−1/6, 1/3} is repelling, since |(f 2)′(−1/6)| = | − 2| > 1.



Exercise 10. For the map f , determine all its points of least period 3.

The points of period 3 are solutions to f 3(x) = x (see below for a graph of f 3), and
we can calculate that, in addition to the fixed point at 1/6, the only such points are at
−1/2, 0, and 1/2, so these 3 points are of least period 3, and constitute a 3-cycle.
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Exercise 11. For the map f , determine all its points of least period 4.

The points of period 4 are solutions to f 4(x) = x (see below for a graph of f 4), and
we can calculate that, in addition to the fixed point at 1/6, and the points −1/6, 1/3
of least period 2, the only such points are at −5/18, 1/18, 2/9, and 7/18, so these 4
points are of least period 4, and constitute a 4-cycle.
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Exercise 12. Is it the case that f has a point of least period n for every n ∈ N?

Indeed f has a point of least period n for every n ∈ N, by Sharkovskii’s Theorem,
since f is continuous and has a point of least period 3.

Exercise 13. Can you guess (or even prove) a formula for the number of points of
period n for the map f?

Let Pn denote the number of points of period n. Exercise 7 gives P1 = 1, exercise
9 gives P2 = 1 + 2 = 3, exercise 10 gives P3 = 1 + 3 = 4, and exercise 11 gives
P4 = 1 + 2 + 4 = 7.

These exercises may suggest that there are n points of least period n for each n ∈ N
(and hence that Pn equals the sum of the divisors of n). However this is false, and it
fails at n = 5: you can check that there are two orbits of least period 5, so 10 points of
least period 5, therefore P5 = 1 + 10 = 11 (the 11 solutions to the equation f 5(x) = x
are visible in the graph of f 5 below).

In fact the sequence (Pn)n≥1 begins as 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . ., and it
can be shown that Pn is the solution of the difference equation Pn+2 = Pn + Pn+1 with
initial values P1 = 1, P2 = 3 (this is reminiscent of the construction of the Fibonacci
sequence). An alternative formula for Pn is as the trace (the sum of the diagonal entries)

of the nth power of the matrix

(
0 1
1 1

)
.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4


