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Aim of the module

* To provide the mathematical tools necessary
for understanding modern macroeconomics.

* To develop intuition for applying these tools to
dynamic models.

* To strengthen confidence in linking formal
methods with economic reasoning.



Teaching Schedule
o e e

Hour 1 1-50 Introduction, Linear systems: definitions and examples, Eigenvalues, Quadratic forms, Trigonometric
functions, Complex numbers

Hour 2 Continuous Time Dynamics I: differential equations basics, first-order DEs (separable, linear),
qualitative vs analytical solutions, stability of first-order equations

Hour 3 Continuous Time Dynamics II: higher-order equations, oscillatory solutions (damped vs explosive
cycles), linear systems in matrix form, trace—determinant rule

Hour 4 Continuous Time Dynamics lll: phase diagrams for 2D systems, nonlinear systems, saddle points
(theory, macro example K—C, linear system example)

Hour 5 Optimal Control (intro) + Discrete Time: state/control variables, Hamiltonian, maximum principle,
infinite horizon, transversality. Discrete time: difference equations, stability, stochastic difference
equations (Blanchard—Khan)



Readings

» D. Acemoglu, Introduction to Modern economic
growth", Princeton University Press

» A. Chiang, "Fundamental methods in
mathematical economics"”, McGrawHill

» A. Chiang, "Elements of dynamic optimization",
McGrawHill

» ). Miao, "Economic dynamics in discrete time",
MIT Press

» K. Sydsaeter et al., "Further mathematics for
economic analysis", FT Prentice Hall

Note: PDF copies of these books are saved in the
folder “readings” on QMPLUS for your reference




1. Linear systems: definitions and O (

examples

Eigenvalues

Quadratic forms
Trigonometric functions
Complex numbers
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1.1 LINEAR SYSTEMS: DEFINITIONS AND
EXAMPLES



1. What is a Linear System?

* Alinear system is a set of linear equations.

 Each equation represents a line, plane, or
hyperplane.

e Example:
(
<2x+ 3y=8
\—x+4y= 1
Goal: Find values of x and y that satisfy all

equations.



What Is a Matrix?

A matrix is a rectangular array of numbers.

We can write linear systems using matrix
notation: Ax = b, where:

A is the coefficient matrix
X is the vector of unknowns
b is the vector of constants



Solving a Linear System

* Solving means finding values of x that make Ax
= b true.

* Three possible outcomes:
1. One solution

2. Infinitely many solutions
3. No solution



Square Matrix Case (m = n)

* |f Aissquare and |A]| # 0: Unique solution
exists.

e |If |A] =0: Either no solution or infinitely
many.

e Determinant tells us if the matrix is invertible
(if 2 0).



Rank and Solutions

Rank: Number of independent rows (or
columns).

* |f rank(A) = rank(A|b): At least one solution.
* |f rank(A) < rank(A|b): No solution.

* |f rank(A) < number of variables: Infinitely
many solutions.

* See notes or next slide for rank(A|b)



Note on the side

In linear algebra, rank(A|b) refers to the rank of the augmented matrix [A|b], which is formed by
combining the coefficient matrix A with the column vector b. The rank of a matrix is the number of
linearly independent rows (or columns) in the matrix. The rank of the augmented matrix [A|b] is crucial
for determining whether a system of linear equations represented by Ax = b has a solution.

Augmented Matrix:

* The augmented matrix [A|b] is created by appending the column vector 'b' (the constants from the
right side of the equations) to the coefficient matrix 'A'.

Rank:

*  The rank of a matrix is the maximum number of linearly independent rows (or columns).
System of Equations:

The equation Ax = b represents a system of linear equations, where A is the coefficient matrix, x is the
vector of unknowns, and b is the constant vector.

Consistency:

* Asystem of equations is considered consistent (meaning it has at least one solution) if and only if
the rank of the original matrix A is equal to the rank of the augmented matrix [A|b]. If these ranks
are not equal, the system is inconsistent and has no solutions.

* Insimpler terms: If adding the column 'b' to matrix 'A' doesn't change the "essential
dimensionality" of the system (as measured by rank), then there's a solution. If it does change the
dimensionality, there's no solution




Analogy: Equations as Clues

Each equation = a clue.

Independent clues help solve the mystery.
Redundant clues = no new info.
Contradictory clues = no solution.



So, your original system:

e A(mxn)-x(nx1)=b(mx1)A(mxn)-x(nx1)=b(mx1)
Means:

* You have m equations and n unknowns.

* You're looking for values of x that satisfy all
equations.

* Whether you have a unique solution, no solution,
or infinitely many solutions depends on how
independent the equations are — this is
what determinants and rank help us measure.



Solving Ax = b: the Rank Test (what A and bmean) What are A and b?

A: coefficient matrix (hnumbers multiplying the variables).
b: right-hand-side constants.
Augmented matrix (4 | b) :matrix A with b appended as an extra column.

Rank facts (Rouché—Capelli):

rank(4) = rank(A | b) = n - one unique solution (full pivots).
rank(4) = rank(A | b) < n - infinitely many solutions (free variables).
rank(4) < rank(A | b) = no solution (inconsistent).

Geometric intuition:
Columns of A span all reachable right-hand sides.

If b lies in that span = solvable; if not - no solution.

Cont. for example and graphic intuition



Examples
1. Unique solution: A = E _11]; b = [(2)]

P
rank(A) = rank(A | b% = 2 = n = unique solution

2. No solution: A = B ;]; b = E]

Row-reduce (A | b) — [é é : 1

# rank(A|b)=2 = no solution.

= contradiction = ranks rank(A)=1

3. Infinitely many solutions 4 = [ 1] p = E]

2 )
R2*<R2-2R1 (4 | b) — [é é lrzé |

rank(4) = rank(A | b) = 1 < n = 2 = infinitely many
R2* is the transformed, "new” R2




Graphically

Goal:
*  Show how equations in two or three
variables correspond to lines or planes, and Graphical Solution of a Linear System
how their intersections represent solutions. ol T
Two Variables (ZD) Te ;;xoL:gn;:(;M. 0.91)
* Each equation s a line. Al
Show:
— One solution: lines intersect at a point. Al
— No solution: lines are parallel.
— Infinite solutions: lines coincide. o
1.
Tools:
Desmos (https://www.desmos.com)
0
GeoGebra
Python with matplotlib
-1}
Example:
e  Plot both lines. The intersection is the unique -2 -1 o0 1 2 3 Z 5 6
solution.
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Intuitively

why solutions exist (or don’t) in terms of information and constraints.
Analogy: Solving a Mystery
Each equation is a clue.

More clues can help narrow down the solution — but only if they’re
independent.

Redundant or conflicting clues either don’t help or create a contradiction.
Dimensions & Geometry

If you have 2 unknowns, the solution is a point in 2D space.

1 equation = a line (too many possibilities),

2 equations = possibly a point (just right),

3 or more - may over-constrain the system.

Degrees of Freedom

If the system has free variables, that means you have choice in the solution
— a family of solutions.



Examples from Economics and Finance

Example 1: Budget Constraint

* A consumer has a budget of £100:

e 2x+4y=1002x+4y=100xx: number of goods A (price £2),

* y:number of goods B (price £4).

* Thisisalinein 2D: all the combinations of goods they can afford.

Example 2: Leontief Input-Output Model. mode: x = Ax + b

*  In matrix form:

* input coefficients (what each sector needs from others),

*  x:total output levels,

*  b: final demand vector.

*  You solve this to find how much each sector must produce.
* Interpretation: Ax = intermediate demand; b = final demand
Solve: (I —A)x =b>x = (1 — A)_lb) Leontief inverse, if I — A is invertible)
Objects:

*  A:input coefficients

*  Xx:grossoutputs

*  b:final demand



Example 3 Arbitrage Pricing Theory
(APT) as a Linear System (page 1 of 2)

1 = Binfi + Bizafo + - Binfat+€i
Where:

T; = return on asset i

Bi; = sensitivity (or "loading") of asset i to factor j
fj = return on factor j

€; = idiosyncratic (asset-specific) shock

Matrix Form
Suppose we observe m assets and assume n factors affect returns. Then:

51 P11 Bz - B ][N €1

2| _[Bar B2z - Ban||f 4|2
"m .Bml ﬁmz ,an fn Em
That is:
r=Bf +¢€
Where:

r = vector of observed returns (m X 1)
B = factor loadings (m X n)

f = vector of unknown factors (n X 1)
€ = vector of errors (m X 1)



Solving and Interpreting the APT System (page 2 of 2)

Linear System Setup

e Thisis alinear system with:

* Known: 1, the asset returns

 Known: B, the matrix of factor loadings (from regression)
* Unknown: f, the factor returns

Solving for the Factors f

* |f we assume the error term is small or zero on average, we can estimate
factor returns f by solving:

Bf =r
* This is often done via least squares:
f=(B"B)'BTr
* This is the solution to a linear system that minimizes the squared errors —
very common in econometrics.



Economic Interpretation: This setup is very useful
in finance for:

* Estimating systematic risk exposures,
* Finding common drivers of asset returns,
* Constructing hedged portfolios,

* Understanding macroeconomic sensitivity of
assets.

For example, the factors might include:
* Interest rate changes,

* Inflation shocks,

* QOil price movements,

* Market index returns.



Summary: APT as a Linear System

QMUL Presessional course: Maths for
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1.2 EIGENVALUES



2. What Are Eigenvalues?

Why Are We Talking About Eigenvalues?

In economics, many models describe how things change over time. For
example:

 How output or capital evolve in the future
* How a system reacts to a shock
*  Whether things stabilise, grow, or explode

Often, these models take the form:

X1 =AX

Where:

* X, is a vector of variables (e.g., output and capital)
* Ais a matrix of relationships or coefficients

To predict what happens over time, we need to understand what the
matrix A does. That’s where eigenvalues come in.



Background intuition

A vector has two features: a direction and a magnitude (length).
Example:

V= E] (a column vector). This means:

e Move 1 step to the right
e Move 2 steps up

Intuition: it’s an arrow pointing diagonally upward.

A matrix is a rule (linear transformation) that acts on vectors.

It can:

e Stretch them

e Shrink them

e Rotate them

e Flip (reflect) them

We say we “apply the matrix to the vector” — i.e., we multiply them: Av



What Happens When You Multiply?

Example
Let
i Y-l
Then:
2:-14+0-2
A”:[o-1i3-2]:[§]

Interpretation:
The vector becomes longer and steeper — its direction
and length have changed after multiplication by A.



Graphically

Graphic Example: What Happens
When You Multiply?

Applying Matrix A to Vector v  The blue arrow is the original
Hmm Original vector v VeCtOr
B Transformed vector Av 1
v =]
2

* The red arrow is the result of
applying the matrix
2 0
A= [o 3
which stretches the vector:

Doubles the x-component
Triples the y-component

The transformation changes both
the length and the direction of the

X vector (it becomes steeper).



...But some vectors are special

Some vectors are special: when you apply the matrix to them, their
direction does not change.

They only get stretched or shrunk: In other words: Av=Av
* visan eigenvector — a direction that stays the same

* Aisthe eigenvalue — it tells you how much the vector is stretched, shrunk
or flipped (direction does not change, orientation is reversed)

Value of A What It Does

A>1 Vector is stretched
0<Aa<l1 Vector is shrunk
A=1 Vector stays the same
A= -1 Vector flips direction

A=0 Vector collapses to zero



How Do You Find Eigenvalues?

You use this formula:
det(A-A 1)=0
The solutions to this equation are the eigenvalues.

A — Al means: subtract the scalar A from
the diagonal of A.

* Det (A — AI) = 0 is the characteristic equation; its
solutions A are the eigenvalues.

* Quick example:

_[2 1 o [2=-2 1
A"lo 3]' 4 ’U'[ 0 3—;1]
Det(A-Al)=(2-A)(3-A)=0 =. A=2,3.

Where | is the identity matrix



Eigenvectors and Scaling by Eigenvalues of A = [[1, 2], [2, 1]]

y-axis

-4

W v, (original)
. Ay (A=3.0)
H v; (original)
Hl Av: (A=-1.0)

A=3.0

-

The direction remains unchanged, with all arrows aligned along the
same line as their corresponding partners. The length of each vector
is scaled by its eigenvalue, which can also invert the vector if the
eigenvalue is negative (e.g., three times longer or flipped).

2 1

Step-by-step calculation of eigenvalues and eigenvectors:

Step 1: Start from the eigenvalue equation
Av=v=(A-A)v=0
Step 2: Set up the characteristic equation

det(A-11)=0=> det ! ;’1 13 /1] =0

Step 3: Compute the determinant
(1-A1)%—4=)>-2)—3=0.

Step 4: Solve the quadratic
A2-2A\-3=0.>. A=3,-1

These are the eigenvalues:
A=3

QMUL Presessional course: Maths for
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Find eigenvectors

For A=3:
n [2 21],-
Solve (A-3I)v=0= [ ; _2]"‘0
This gives:

SRV [ﬂ (or any multiple of it)
For A=-1:
0 [2 2],
Solve (A-I)v=0= [ > Slv=0
This gives:
[ 1 . .
¢ V,= _1] (or any multiple of it)



Let’s have an example

Imagine a two-variable dynamic system:

]l e a7

Y = output Ky 2 1

K = capital

This system could represent a stylised multiplier process, where: Output depends on
capital, Capital depends on output

Shocks to one variable amplify through their interaction

e A,=3: this direction explodes (unstable)
* A,=-1: this direction oscillates

So the system is not stable — it either grows explosively or flips signs each period depending on the
initial condition.



1.3 QUADRATIC FORM



Quadratic form

A quadratic form is a scalar expression of the form:
Q(x)=x"Ax. Where:

* X is a column vector of size nx1

* X' isits transpose (a 1xn row vector)

* Ais an nxn matrix

So the multiplication:

* AX - gives an nx1 vector

* x'(Ax) - gives a scalar (a number)



Interpreting Q(x)

Q(x) tells us how the vector x interacts with the
matrix A.

Why is this relevant?

It appears in:

e Optimization problems
 Stability analysis



Positive/Negative (Semi)Definiteness

We classify the matrix A based on the value
of Q(x) for all x#0

Matrix Type Condition on Q(z)
Positive definite Q(z) >0
Positive semidefinite Q(z) >0
Negative definite Q(z) <0
Negative semidefinite Q(z) <0

Indefinite Q(z) takes both signs



Link to Eigenvalues

Under symmetry, we don’t need to check Q(x) for all x:
We just look at the eigenvalues A, of A

Matrix Type Condition on eigenvalues
Positive definite AllA; >0

Positive semidefinite AllX; >0

Negative definite AllX; <0

Negative semidefinite AllA; <0

Indefinite Some \; > 0, some < 0

QMUL Presessional course: Maths for
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Example : Deviations from a Policy Target page

Imagine a central bank minimizing a quadratic loss
function that penalizes deviations from policy targets.

Let: x= [C]Where:
— 1t is the deviation of inflation from target
— vy is the deviation of output from potential output
Define the loss function:
L(x)=x"Ax
Where A is a symmetric, positive definite matrix encoding

how severely the central bank penalizes each type of
deviation. Cont.



Example : Deviations from a Policy Target

We choose the matrix:

2 1
A= [1 3
let the vector of deviations be
T
x= [y]
where:
. 7 = inflation deviation from target
. y = output deviation from potential
Step 1: Apply the linear transformation
L(x) = xTAx
1= [ [

Step 2: Multiply out
First multiply A and x:

w=[7 0=

1o =1 N2

L(x) =n(2r +y) + y(m + 3y)

Then multiply by x7:

Step 3: Simplify
L(x) = 2m? + 2my + 3y?
Interpretation

. 2m? :penalty for inflation deviation (quadratic cost, grows quickly with size of deviation)
. 3y? :penalty for output deviation (even larger weight here)
. 2my: interaction term (inflation and output deviations jointly costly)

This is like a quadratic loss function in policy models: it tells us how far the economy is from its targets, weighting inflation and
output.

cont.



Economic Interpretation

This is a weighted penalty:
e Deviations in inflation and output both increase the loss.

The cross term 2mny says that simultaneous deviations in
both inflation and output are even worse than each alone.

The matrix A being positive definite means:

L(x)>0 for all x#0: all deviations are costly.

There’s a unique minimum at x=0— that is, when inflation
is on target and output is at potential.

The central bank has well-defined preferences and no
direction in which deviations would be “rewarded” or
costless.



Food for thought

Why Use a Quadratic Form?

 Symmetric treatment of deviations (inflation
and output)

 Mathematically convenient: convex,
differentiable, easy to optimise

* Policy interpretation: might reflect trade-offs
(e.g. inflation bias vs output gap)



1.4 TRIGONOMETRIC FUNCTIONS



Graphical Explanation: cos(x) (blue) and sin(x) (red)

Definition from the Unit Circle 1.00} PP
On the unit circle (radius = 1): 0751 oy 07107
Any point (u,v) on the circle can be 050l
reached by moving an angle x radians L 071
from the point (1,0) counterclockwise. 025f /

1 % 1
Then: 0.00 i II
u=cos(x) ! cos(x)=0.71 !

. —025 /
v=sin (x) /
So: -0.50} \\ //
cos(x) is the horizontal coordinate —0.75}
sin(x) is the vertical coordinate _1.00} s S

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Graph Intuition
Graphs of sin(x) and cos(x)

From the plot 157
— sin(x)

Sine (red): ! b i 3 — cos(x)

« StartsatO 1.or

* Risesto1atmn/2m/2

* BacktoOatmnn 0.5T

*  Down to-1 at 3r/23m/2 g o

*  Returnsto 0 at 2m2n s
Cosine (blue): o5l

* Startsatl

*  Fallsto 0 at t/2m/2 _10l

. Down to -1 at it

* BacktoOat3m/23m/2 _151 . . . ‘

. Returnsto 1 at 2m2n 0 w2 X (ra;ians) 3n/z 2n
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Understanding Radians

A radian measures arc length on a circle of radius 1.

Since the whole circle has circumference 2m, one full turn is:
21t radians =3600

Quarter turn > /2, Half turn - m, etc.

Angle x (radians) cos(z) sin(z) Interpretation

0 1 0 Start on x-axis

/2 0 1 Top of the circle

iy -1 0 Leftmost point

3 /2 0 -1 Bottom of the circle

2m 1 0 Back to start



Real-World Applications

* DSGE! models (e.g. in RBC? theory):
Stylized output gap often approximated with sinusoidal
shocks.

e Seasonal adjustments in macro data:
Many statistical agencies remove sinusoidal seasonal
effects (e.g. Christmas spikes in consumption).

 Harrod-Domar instability:
If growth doesn’t match savings/investment
equilibrium, output may oscillate.

1 Dynamic Stochastic General Equilibrium
2 Real Business Cycle



Analogy: Central Bank Overreaction and Correction

Scenario:

A central bank is trying to stabilize inflation and output using interest rates. But it only observes the economy with a
delay, and reacts based on imperfect forecasts.

What Happens?

Shock hits the economy: e.g. a cost-push shock raises inflation.

The central bank tightens policy — raises interest rates.

But by the time the effect kicks in, inflation has already begun to fall on its own.
The delayed effect of high rates pushes inflation too far down.

The central bank sees low inflation = now cuts rates.

Again, too late — and inflation starts rising again.

Result:

You get an overshooting-and-correction cycle — not because of irrationality, but because of:
. Reaction lags

. Intertemporal decision-making

. Forward-looking expectations

These cyclical movements — above and below target — are naturally and mathematically captured by sine and cosine
functions.

Trigonometric Functions Capture:

The timing (phase)

The amplitude of deviation

The regularity of cyclical dynamics in response to policy feedback



Function Period (Wavelength)

y=sinz 2m
y = sin(ax) 2;“
y = Asin(ax) Qf
y = Asin(ax) + B 2n

Frequency is the inverse of period:
Frequency=a/2n(number of oscillations per radian)

QMUL Presessional course: Maths for
Macro

Amplitude

A (midline shifted to B)
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1.5 COMPLEX NUMBERS



Topic 1.5 Complex Numbers: What Are They?

A complex number is written as: z=a+bi
*  Where:
a is the real part
b is the imaginary part
i=—1is the imaginary unit
Why Do We Use Them?
* Allow us to solve equations like:
o X*+1=0=x=ti
* Essential for finding all solutions to:
— Quadratic equations
— Differential equations
— Characteristic equations in macro models
In Macroeconomics?
Complex numbers arise:
* When solving dynamic systems
* When eigenvalues are complex (= oscillatory behaviour)
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