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Aim of the module

• To provide the mathematical tools necessary 
for understanding modern macroeconomics.

• To develop intuition for applying these tools to 
dynamic models.

• To strengthen confidence in linking formal 
methods with economic reasoning.
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Teaching Schedule 
Hour Slides Topics

Hour 1 1–50 Introduction, Linear systems: definitions and examples, Eigenvalues, Quadratic forms, Trigonometric 
functions, Complex numbers

Hour 2 Continuous Time Dynamics I: differential equations basics, first-order DEs (separable, linear), 
qualitative vs analytical solutions, stability of first-order equations

Hour 3 Continuous Time Dynamics II: higher-order equations, oscillatory solutions (damped vs explosive 
cycles), linear systems in matrix form, trace–determinant rule

Hour 4 Continuous Time Dynamics III: phase diagrams for 2D systems, nonlinear systems, saddle points 
(theory, macro example K–C, linear system example)

Hour 5 Optimal Control (intro) + Discrete Time: state/control variables, Hamiltonian, maximum principle, 
infinite horizon, transversality. Discrete time: difference equations, stability, stochastic difference 
equations (Blanchard–Khan)



Readings
➢D. Acemoglu, Introduction to Modern economic 

growth", Princeton University Press
➢A. Chiang, "Fundamental methods in 

mathematical economics", McGrawHill
➢A. Chiang, "Elements of dynamic optimization", 

McGrawHill
➢ J. Miao, "Economic dynamics in discrete time", 

MIT Press
➢K. Sydsaeter et al., "Further mathematics for 

economic analysis", FT Prentice Hall
Note: PDF copies of these books are saved in the 
folder “readings” on QMPLUS for your reference
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TOPIC 1
1. Linear systems: definitions and 

examples
2. Eigenvalues
3. Quadratic forms
4. Trigonometric functions
5. Complex numbers
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1.1 LINEAR SYSTEMS: DEFINITIONS AND 
EXAMPLES
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1. What is a Linear System?

• A linear system is a set of linear equations.

• Each equation represents a line, plane, or 
hyperplane.

• Example:

  ൝
2x + 3y = 8 
−x + 4y = 1

Goal: Find values of x and y that satisfy all 
equations.

7
QMUL Presessional course: Maths for 

Macro



What Is a Matrix?

• A matrix is a rectangular array of numbers.

• We can write linear systems using matrix 
notation: Ax = b, where:

• A is the coefficient matrix

• x is the vector of unknowns

• b is the vector of constants
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Solving a Linear System

• Solving means finding values of x that make Ax 
= b true.

• Three possible outcomes:

1. One solution

2. Infinitely many solutions

3. No solution
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Square Matrix Case (m = n)

• If A is square and |A| ≠ 0: Unique solution 
exists.

• If |A| = 0: Either no solution or infinitely 
many.

• Determinant tells us if the matrix is invertible 
(if ≠ 0).
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Rank and Solutions

Rank: Number of independent rows (or 
columns).

• If rank(A) = rank(A|b): At least one solution.

• If rank(A) < rank(A|b): No solution.

• If rank(A) < number of variables: Infinitely 
many solutions.

• See notes or next slide for rank(A|b)
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Note on the side
In linear algebra, rank(A|b) refers to the rank of the augmented matrix [A|b], which is formed by 
combining the coefficient matrix A with the column vector b. The rank of a matrix is the number of 
linearly independent rows (or columns) in the matrix. The rank of the augmented matrix [A|b] is crucial 
for determining whether a system of linear equations represented by Ax = b has a solution.
Augmented Matrix:
• The augmented matrix [A|b] is created by appending the column vector 'b' (the constants from the 

right side of the equations) to the coefficient matrix 'A'.
Rank:
• The rank of a matrix is the maximum number of linearly independent rows (or columns).
System of Equations:
The equation Ax = b represents a system of linear equations, where A is the coefficient matrix, x is the 
vector of unknowns, and b is the constant vector.
Consistency:
• A system of equations is considered consistent (meaning it has at least one solution) if and only if 

the rank of the original matrix A is equal to the rank of the augmented matrix [A|b]. If these ranks 
are not equal, the system is inconsistent and has no solutions.

• In simpler terms: If adding the column 'b' to matrix 'A' doesn't change the "essential 
dimensionality" of the system (as measured by rank), then there's a solution. If it does change the 
dimensionality, there's no solution
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Analogy: Equations as Clues

• Each equation = a clue.

• Independent clues help solve the mystery.

• Redundant clues = no new info.

• Contradictory clues = no solution.
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So, your original system:
• A(m×n)⋅x(n×1)=b(m×1)A(m×n)⋅x(n×1)=b(m×1)
Means:
• You have m equations and n unknowns.
• You're looking for values of x that satisfy all 

equations.
• Whether you have a unique solution, no solution, 

or infinitely many solutions depends on how 
independent the equations are — this is 
what determinants and rank help us measure.
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Solving 𝐴𝑥 = 𝑏: the Rank Test (what 𝐴 and 𝑏mean) What are 𝐴 and 𝑏?

𝐴: coefficient matrix (numbers multiplying the variables).
𝑏: right-hand-side constants.
Augmented matrix 𝐴 ∣ 𝑏  :matrix 𝐴 with 𝑏 appended as an extra column.

Rank facts (Rouché–Capelli):
rank 𝐴 = rank 𝐴 ∣ 𝑏 = 𝑛 → one unique solution (full pivots).
rank 𝐴 = rank 𝐴 ∣ 𝑏 < 𝑛 → infinitely many solutions (free variables).
rank 𝐴 < rank 𝐴 ∣ 𝑏 → no solution (inconsistent).

Geometric intuition:
Columns of 𝐴 span all reachable right-hand sides.
If 𝑏 lies in that span → solvable; if not → no solution. 

Cont. for example and graphic intuition
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Examples
1. Unique solution: 𝐴 =

1 1
1 −1

, 𝑏 =
2
0

R2*​←R2​−R1​:
1  1|2
0 −2|0

rank 𝐴 = rank 𝐴 ∣ 𝑏 = 2 = 𝑛 ⇒ unique solution

2. No solution: 𝐴 =
1 1
2 2

, 𝑏 =
1
3

Row-reduce 𝐴 ∣ 𝑏 →
1 1 ∣ 1
0 0 ∣ 1

⇒ contradiction ⇒ ranks rank(A)=1 
≠ rank(A∣b)=2 ⇒ no solution.

3. Infinitely many solutions 𝐴 =
1 1
2 2

, 𝑏 =
1
2

R2*​←R2​−2R1​ 𝐴 ∣ 𝑏 →
1 1 ∣ 1
0 0 ∣ 0

,

rank 𝐴 = rank 𝐴 ∣ 𝑏 = 1 < 𝑛 = 2 ⇒ infinitely many
R2*​ is the transformed, ”new” R2
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Graphically

Goal:
• Show how equations in two or three 

variables correspond to lines or planes, and 
how their intersections represent solutions.

 Two Variables (2D)
• Each equation is a line.
Show:

– One solution: lines intersect at a point.
– No solution: lines are parallel.
– Infinite solutions: lines coincide.

Tools:
Desmos (https://www.desmos.com)
GeoGebra
Python with matplotlib
Example:
• Plot both lines. The intersection is the unique 

solution.
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Intuitively

why solutions exist (or don’t) in terms of information and constraints.
Analogy: Solving a Mystery
Each equation is a clue.
More clues can help narrow down the solution — but only if they’re 
independent.
Redundant or conflicting clues either don’t help or create a contradiction.
 Dimensions & Geometry
If you have 2 unknowns, the solution is a point in 2D space.
1 equation → a line (too many possibilities),
2 equations → possibly a point (just right),
3 or more → may over-constrain the system.

 Degrees of Freedom
If the system has free variables, that means you have choice in the solution 
— a family of solutions.
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Examples from Economics and Finance

Example 1: Budget Constraint
• A consumer has a budget of £100:
• 2x+4y=1002x+4y=100xx: number of goods A (price £2),
• y: number of goods B (price £4).
• This is a line in 2D: all the combinations of goods they can afford.

Example 2: Leontief Input-Output Model. Model: 𝑥 = 𝐴𝑥 + 𝑏

• In matrix form:
• input coefficients (what each sector needs from others),
• x: total output levels,
• b: final demand vector.
• You solve this to find how much each sector must produce.
• Interpretation: 𝐴𝑥 = intermediate demand; 𝑏 = final demand

Solve: 𝐼 − 𝐴 𝑥 = 𝑏 ⇒ 𝑥 = ൫𝐼 − 𝐴)−1𝑏( Leontief inverse, if 𝐼 − 𝐴 is invertible)
Objects:
• 𝐴: input coefficients
• 𝑥: gross outputs
• 𝑏: final demand
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Example 3 Arbitrage Pricing Theory 
(APT) as a Linear System (page 1 of 2)

𝑟𝑖 = β𝑖1𝑓1 + β𝑖2𝑓2 + ⋯ β𝑖𝑛𝑓𝑛+∈𝑖

Where:
• 𝑟𝑖 = return on asset 𝑖

• 𝛽𝑖𝑗 = sensitivity (or "loading") of asset 𝑖 to factor 𝑗

• 𝑓𝑗 = return on factor 𝑗
• 𝜖𝑖 = idiosyncratic (asset-specific) shock

Matrix Form
• Suppose we observe 𝑚 assets and assume 𝑛 factors affect returns. Then:

•

𝑟1

𝑟2

⋮
𝑟𝑚

=

𝛽11 𝛽12 ⋯ 𝛽1𝑛

𝛽21 𝛽22 ⋯ 𝛽2𝑛

⋮ ⋮ ⋱ ⋮
𝛽𝑚1 𝛽𝑚2 ⋯ 𝛽𝑚𝑛

𝑓1

𝑓2

⋮
𝑓𝑛

+

𝜖1

𝜖2

⋮
𝜖𝑚

That is:
𝑟 = 𝐵𝑓 + 𝜖

Where:
• 𝑟 = vector of observed returns (𝑚 × 1)
• 𝐵 = factor loadings (𝑚 × 𝑛)
• 𝑓 = vector of unknown factors (𝑛 × 1)
• 𝜖 = vector of errors (𝑚 × 1)
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Solving and Interpreting the APT System (page 2 of 2)

Linear System Setup
• This is a linear system with:
• Known: 𝑟, the asset returns
• Known: 𝐵, the matrix of factor loadings (from regression)
• Unknown: 𝑓, the factor returns

Solving for the Factors 𝑓
• If we assume the error term is small or zero on average, we can estimate 

factor returns 𝑓 by solving:
𝐵𝑓 ≈ 𝑟

• This is often done via least squares:
መ𝑓 = ൫𝐵𝑇𝐵)−1𝐵𝑇𝑟

• This is the solution to a linear system that minimizes the squared errors — 
very common in econometrics.
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Economic Interpretation: This setup is very useful 
in finance for:
• Estimating systematic risk exposures,
• Finding common drivers of asset returns,
• Constructing hedged portfolios,
• Understanding macroeconomic sensitivity of 

assets.
For example, the factors might include:
• Interest rate changes,
• Inflation shocks,
• Oil price movements,
• Market index returns.
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Component Linear System Term Interpretation

r known output vector Observed returns of assets

B known coefficient matrix Factor sensitivities (betas)

f unknown vector Factor returns to estimate

ϵ residual Unexplained (idiosyncratic) return

Summary: APT as a Linear System
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1.2 EIGENVALUES
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2. What Are Eigenvalues?

Why Are We Talking About Eigenvalues?
In economics, many models describe how things change over time. For 
example:
• How output or capital evolve in the future
• How a system reacts to a shock
• Whether things stabilise, grow, or explode

Often, these models take the form:
xt+1=Axt

Where:
• xt is a vector of variables (e.g., output and capital)
• A is a matrix of relationships or coefficients
To predict what happens over time, we need to understand what the 
matrix A does. That’s where eigenvalues come in.
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Background intuition
A vector has two features: a direction and a magnitude (length).

Example:

v = 
1
2

 (a column vector). This means:

• Move 1 step to the right
• Move 2 steps up

Intuition: it’s an arrow pointing diagonally upward.

A matrix is a rule (linear transformation) that acts on vectors.

It can:
• Stretch them
• Shrink them
• Rotate them
• Flip (reflect) them

We say we “apply the matrix to the vector” — i.e., we multiply them: Av
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What Happens When You Multiply?
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Example
Let

𝐴 =
2 0
0 3

, 𝑣 =
1
2

Then:

𝐴𝑣 =
2 ⋅ 1 + 0 ⋅ 2
0 ⋅ 1 + 3 ⋅ 2

=
2
6

Interpretation:
The vector becomes longer and steeper — its direction 
and length have changed after multiplication by 𝐴.



Graphically 
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Graphic Example: What Happens 
When You Multiply?
• The blue arrow is the original 

vector

𝑣 =
1
2

• The red arrow is the result of 
applying the matrix

𝐴 =
2 0
0 3

which stretches the vector:
Doubles the x-component
Triples the y-component

The transformation changes both 
the length and the direction of the 
vector (it becomes steeper).



…But some vectors are special

Some vectors are special: when you apply the matrix to them, their 
direction does not change.

They only get stretched or shrunk: In other words: Av=λv

• v is an eigenvector — a direction that stays the same

• λ is the eigenvalue — it tells you how much the vector is stretched, shrunk 
or flipped (direction does not change, orientation is reversed)
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How Do You Find Eigenvalues?
You use this formula:
det(A−λ I)=0 
The solutions to this equation are the eigenvalues.
𝐴 − 𝜆𝐼  means: subtract the scalar 𝜆 from 
the diagonal of 𝐴.
• Det (𝐴 − 𝜆𝐼) = 0 is the characteristic equation; its 

solutions 𝜆 are the eigenvalues.
• Quick example:

A=
2 1
0 3

, 𝐴 − 𝜆𝐼=
2 − 𝜆 1

0 3 − 𝜆

Det(A−λI)=(2−λ)(3−λ)=0   ⇒.  λ=2,3.

Where I is the identity matrix 
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The direction remains unchanged, with all arrows aligned along the 

same line as their corresponding partners. The length of each vector 

is scaled by its eigenvalue, which can also invert the vector if the 

eigenvalue is negative (e.g., three times longer or flipped). 

1 2
2 1

Step-by-step calculation of eigenvalues and eigenvectors:

Step 1: Start from the eigenvalue equation

Av=λv⇒(A−λI)v=0

Step 2: Set up the characteristic equation

det(A−λI)=0⇒  det 
1 − 𝜆 2

2 1 − 𝜆
 =0

Step 3: Compute the determinant

(1−λ)2−4=λ2−2λ−3=0. 

 

Step 4: Solve the quadratic

λ2−2λ−3=0. ⇒.   λ=3,−1

These are the eigenvalues:

λ1=3

λ2=−1

31
QMUL Presessional course: Maths for 

Macro



Find eigenvectors
For λ=3:

• Solve (A−3I)v=0⇒
−2 2
2 −2

v=0

This gives:

• v1= 
1
1

 (or any multiple of it)

 For λ=−1:

• Solve (A−I)v=0⇒
2 2
2 2

v=0

This gives:

• v2= 
1

−1
 (or any multiple of it)
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Let’s have an example 

Imagine a two-variable dynamic system:

Y = output

K = capital

This system could represent a stylised multiplier process, where: Output depends on 
capital, Capital depends on output

Shocks to one variable amplify through their interaction

• λ1=3: this direction explodes (unstable)

• λ2=−1: this direction oscillates

So the system is not stable — it either grows explosively or flips signs each period depending on the 
initial condition.
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1.3 QUADRATIC FORM
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Quadratic form 

A quadratic form is a scalar expression of the form:

Q(x)=x′Ax. Where:

• x is a column vector of size n×1

• x′ is its transpose (a 1×n row vector)

• A is an n×n matrix

So the multiplication:

• Ax → gives an n×1 vector

• x′(Ax) → gives a scalar (a number)
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Interpreting Q(x)

Q(x) tells us how the vector x interacts with the 
matrix A. 

Why is this relevant? 

It appears in:

• Optimization problems

• Stability analysis

• …
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Positive/Negative (Semi)Definiteness

We classify the matrix A based on the value 
of Q(x) for all x≠0
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Link to Eigenvalues

Under symmetry, we don’t need to check Q(x) for all x:
We just look at the eigenvalues λi of A
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Example : Deviations from a Policy Target page

Imagine a central bank minimizing a quadratic loss 
function that penalizes deviations from policy targets.

Let: x= 
π
y where:

– π is the deviation of inflation from target

– y is the deviation of output from potential output

Define the loss function:

L(x)=x′Ax

Where A is a symmetric, positive definite matrix encoding 
how severely the central bank penalizes each type of 
deviation.          Cont.
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Example : Deviations from a Policy Target
We choose the matrix:

𝐴 =
2 1
1 3

let the vector of deviations be

𝑥 =
𝜋
𝑦

where:

• 𝜋 = inflation deviation from target

• 𝑦 = output deviation from potential

Step 1: Apply the linear transformation
𝐿 𝑥 = 𝑥𝑇𝐴𝑥

𝐿 𝑥 = 𝜋 𝑦 2 1
1 3

𝜋
𝑦

Step 2: Multiply out

First multiply 𝐴 and 𝑥:

𝐴𝑥 =
2 1
1 3

𝜋
𝑦 =

2𝜋 + 𝑦
𝜋 + 3𝑦

Then multiply by 𝑥𝑇:

𝐿 𝑥 = 𝜋 𝑦 2𝜋 + 𝑦
𝜋 + 3𝑦

𝐿 𝑥 = 𝜋 2𝜋 + 𝑦 + 𝑦 𝜋 + 3𝑦

Step 3: Simplify
𝐿 𝑥 = 2𝜋2 + 2𝜋𝑦 + 3𝑦2

Interpretation

• 2𝜋2 :penalty for inflation deviation (quadratic cost, grows quickly with size of deviation)

• 3𝑦2 :penalty for output deviation (even larger weight here)

• 2𝜋𝑦: interaction term (inflation and output deviations jointly costly)

This is like a quadratic loss function in policy models: it tells us how far the economy is from its targets, weighting inflation and 
output.
          cont.
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Economic Interpretation

This is a weighted penalty:
• Deviations in inflation and output both increase the loss.
• The cross term 2πy says that simultaneous deviations in 

both inflation and output are even worse than each alone.

The matrix A being positive definite means:
• L(x)>0 for all x≠0: all deviations are costly.
• There’s a unique minimum at x=0— that is, when inflation 

is on target and output is at potential.
• The central bank has well-defined preferences and no 

direction in which deviations would be “rewarded” or 
costless.
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Food for thought  

Why Use a Quadratic Form?

• Symmetric treatment of deviations (inflation 
and output)

• Mathematically convenient: convex, 
differentiable, easy to optimise

• Policy interpretation: might reflect trade-offs 
(e.g. inflation bias vs output gap)
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1.4 TRIGONOMETRIC FUNCTIONS
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Definition from the Unit Circle

On the unit circle (radius = 1):

Any point (u,v) on the circle can be 
reached by moving an angle x radians 
from the point (1,0) counterclockwise.

Then:

u=cos(x) 

v=sin (x)

So:

cos(x) is the horizontal coordinate

sin(x) is the vertical coordinate

Graph Intuition

From the plot

Sine (red):
• Starts at 0

• Rises to 1 at π/2π/2

• Back to 0 at ππ

• Down to –1 at 3π/23π/2

• Returns to 0 at 2π2π

Cosine (blue):
• Starts at 1

• Falls to 0 at π/2π/2

• Down to –1 at ππ

• Back to 0 at 3π/23π/2

• Returns to 1 at 2π2π
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Understanding Radians

• A radian measures arc length on a circle of radius 1.

• Since the whole circle has circumference 2π, one full turn is:

• 2π radians =360∘

• Quarter turn → π/2,    Half turn → π, etc.
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Real-World Applications

• DSGE1 models (e.g. in RBC2 theory):
Stylized output gap often approximated with sinusoidal 
shocks.

• Seasonal adjustments in macro data:
Many statistical agencies remove sinusoidal seasonal 
effects (e.g. Christmas spikes in consumption).

• Harrod-Domar instability:
If growth doesn’t match savings/investment 
equilibrium, output may oscillate.

1 Dynamic Stochastic General Equilibrium
2 Real Business Cycle

46
QMUL Presessional course: Maths for 

Macro



Analogy: Central Bank Overreaction and Correction

Scenario:
A central bank is trying to stabilize inflation and output using interest rates. But it only observes the economy with a 
delay, and reacts based on imperfect forecasts.

What Happens?
Shock hits the economy: e.g. a cost-push shock raises inflation.
The central bank tightens policy — raises interest rates.
But by the time the effect kicks in, inflation has already begun to fall on its own.
The delayed effect of high rates pushes inflation too far down.
The central bank sees low inflation → now cuts rates.
Again, too late — and inflation starts rising again.

Result:
You get an overshooting-and-correction cycle — not because of irrationality, but because of:
• Reaction lags
• Intertemporal decision-making
• Forward-looking expectations
These cyclical movements — above and below target — are naturally and mathematically captured by sine and cosine 
functions.

Trigonometric Functions Capture:
The timing (phase)
The amplitude of deviation
The regularity of cyclical dynamics in response to policy feedback
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Frequency is the inverse of period:
Frequency=a/2π(number of oscillations per radian)
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1.5 COMPLEX NUMBERS
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Topic 1.5 Complex Numbers: What Are They?

A complex number is written as: z=a+bi
• Where:
a is the real part
b is the imaginary part
i=−1is the imaginary unit
Why Do We Use Them?
• Allow us to solve equations like:
• x2+1=0⇒x=±i 
• Essential for finding all solutions to:

– Quadratic equations
– Differential equations
– Characteristic equations in macro models

In Macroeconomics?
Complex numbers arise:
• When solving dynamic systems
• When eigenvalues are complex (→ oscillatory behaviour)
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