Matrix Algebra

A matrix 1s a rectangular array of numbers, denoted

A=[az]=[Alx=| " "




Square matrix

A symmetric matrix is one in which a;; = ay; for all i and k.

A diagonal matrix is a square matrix whose only nonzero elements appear on the
main diagonal, that is, moving from upper left to lower right.

A scalar matrix is a diagonal matrix with the same value in all diagonal elements.
An identity matrix is a scalar matrix with ones on the diagonal. This matrix is
always denoted I. A subscript is sometimes included to indicate its size, or order.
For example, I, indicates a 4 X 4 identity matrix.

A triangular matrix is one that has only zeros either above or below the main
diagonal. If the zeros are above the diagonal, the matrix is lower triangular.



Transposition

The transpose of a matrix A, denoted A’, is obtained by creating the matrix whose kth
row is the kth column of the original matrix.” Thus, if B = A’, then each column of A
will appear as the corresponding row of B.If Aisn X K, then A’ is K X n.

The definition of a symmetric matrix implies that
if (and only if) A is symmetric, then A = A’.
It also follows from the definition that for any A,
(A") = A.
Finally, the transpose of a column vector, a, is a row vector:

a'=la; a -+ a,



Multiplication

Matrices are multiplied by using the inner product. The inner product, or dot product,
of two vectors, a and b, 1s a scalar and is written

a’'b = albl a2b2 *e anbn — 27: 1a]-bj.
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For an n X K matrix A and a K X M matrix B, the product matrix, C = AB, is an
n X M matrix whose ikth element is the inner product of row i of A and column k of B.
Thus, the product matrix C is

*A simple way to check the conformability of two matrices for multiplication is to write down the dimensions
of the operation, for example, (n X K) times (K X M). The inner dimensions must be equal; the result has
dimensions equal to the outer values.

C=AB = Cjj, — afbk.



The product of a matrix and a vector is written

¢ = Ab.

The number of elements in b must equal the number of columns in A; the result is a
vector with number of elements equal to the number of rows in A. For example,

5 4 2 1 a
4 |1 =12 6 1 b |.
1 1 1 0 c

We can interpret this in two ways. First, it is a compact way of writing the three equations
5=4a+ 2b + Ic,
4 = 2a + 6b + Ic,
1=1a + 1b + Oc.
Second, by writing the set of equations as
5 4 2 1
4 | =al2|+b|6|+c|1
1



Some general rules for matrix multiplication are as
follows

Associative law: (AB)C = A(BC).

Distributive law: A(B + C) = AB + AC.

Transpose of a product: (AB)' = B'A’.

Transpose of an extended product: (ABC)' = C'B'A’.



Denote by i a vector that contains a column of ones. Then,

n
Sxi=x;+x+ - +x, =i'x
i=1

If all elements in x are equal to the same constant a, then x = ai and

n

i;x,- = i'(ai) = a(i'i) = na. S U MS O F

For any constant a and vector x,

e VALUES

from which it follows that



IDEMPOTENT MATRIX
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The matrix (1/n)ii’ is an n X n matrix with every element equal to 1/n. The set of values
in deviations form is

X1 — X
X) — X . 1.,
2 =[x —ix] = [x - —ll’x]
. e n
| Xp — X

Because x = Ix,

[x — lii’x] = [Ix — lii’x] = [I — lii’]x = M.
n n n

Two properties of M are useful at this point. First, because all off-diagonal elements

of M equal —1/n, M° is symmetric. Second, as can easily be verified by multiplication,
M’ is equal to its square; M'M° = M.



DEFINITION A.1 Idempotent Matrix

An idempotent matrix, M, is one that is equal to its square, that is, M?> = MM = M.
If M is a symmetric idempotent matrix (all of the idempotent matrices we shall
encounter are symmetric), then M'M = M as well.
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FIGURE A.1  Vector Space.

The K elements of a column vector 3T
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can be viewed as the coordinates of a point in a K-dimensional space, as shown in i
Figure A.1 for two dimensions, or as the definition of the line segment connecting the 3

origin and the point defined by a.

3 4

First coordinate
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scalar multiplication and addition FIGURE A1 Vector Space.

Second coordinate

First coordinate
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The two-dimensional plane is the set of all vectors with two real-valued coordinates.
We label this set R? (“R two,” not “R squared”). It has two important properties.

o R?is closed under scalar multiplication; every scalar multiple of a vector in R? is
also in R2.

e R?is closed under addition; the sum of any two vectors in the plane is always a
vector in R2.

A vector space is any set of vectors that is closed under scalar multiplication and
addition.

A vector space is any set of vectors that is closed under scalar multiplication and
addition.
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MATRICES

A set of vectors is linearly independent if and only if the only solution (a4, ..., ak)to
aa; + apa, + - + agag = 0
is
ap =ay,= - =ag=0.

the preceding implies the following equivalent definition of a

basis.

The set of all linear combinations of a set of vectors is the vector space that is
spanned by those vectors.

The column space of a matrix is the vector space that is spanned by its column

vectors.
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1 5 6
A=|2 6 8
7 1 8]

It contains three vectors from R3 , but the third is the sum of the first two, so the column
space of this matrix cannot have three dimensions. Nor does it have only one, because
the three columns are not all scalar multiples of one another. Hence, it has two, and the
column space of this matrix is a two-dimensional subspace of R>
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The column rank of a matrix is the dimension of the vector space that is spanned by its column vectors.

What is the column rank of A? Can you see that it is 2?

1 5 6|

A=|2 6 8

7 1 8

Consider Matrix B _ _
1 2 3

5 1 5

B= 6 4 5|

'3 1 4]
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Each column of B is a vector in R*, so the column space of B is a three-dimensional
subspace of R*.

Consider, instead, the set of vectors obtained by using the rows of B instead of the
columns. The new matrix would be

1 5 6 3
C=]|2 1.
3 5 5 4

p—
i
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1 5 6
c=|2 1 4
'3 5 5

This matrix is composed of four column vectors from R>.




Rank of a Matrix

THEOREM A.1 Equality of Row and Column Rank

The column rank and row rank of a matrix are equal. By the definition of row
rank and its counterpart for column rank, we obtain the corollary, the row space
and column space of a matrix have the same dimension. (A-42)

rank(A) = rank(A’) = min (number of rows, number of columns).
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The determinant of a matrix is nonzero if and only if it has full rank.

It is most convenient to begin with a diagonal matrix

(d, 0 0 -+ 0

0 d 0 - 0
D: 2 . o

0 0 0 dy




For 2 X 2 matrices, the computation of the determinant is

a C

b d=ad—bc.

A 3X3, however, might be computed on occasion; if so, the following shortcut known as Sarrus’s rule will

Ay Gy (y3| = 41142033 T A12023031 T 413032031 — 31022013 — 1012033 — A1139343).
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SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

Consider the set of n linear equations

A homogeneous system is of the form Ax = 0.

A nonhomogeneous system of equations is of the form Ax = b, where b is a
nonzero vector.



SOLUTION OF A SYSTEM OF LINEAR EQUATIONS - INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed.

Suppose that we could find a square matrix B such that BA = L

BAx = Ix = x = Bb.



SOLUTION OF A SYSTEM OF LINEAR EQUATIONS - INVERSE MATRICES

If the matrix B exists, then it is the inverse of A, denoted

B=A"l
From the definition,

A7A =1
In addition, by premultiplying by A, postmultiplying by A!, and then canceling terms,
we find

AAT! =1

as well.



CHARACTERISTIC ROOTS AND VECTORS

A useful set of results for analysing a square matrix A arises from the solutions to the set of equations

Ac = Ac.

Ac = A,

(A — A)c = 0.

This equation is a homogeneous system that has a nonzero solution only if the matrix
(A — Al) is singular or has a zero determinant. Therefore, if A is a solution, then

A — M| = 0.



CHARACTERISTIC ROOTS AND VECTORS

With A in hand, the characteristic vectors are derived from the original problem,

Ac = Ac,
(A — Al)c = 0.
A K X K symmetric matrix has K distinct characteristic vectors, ¢, ¢, ... ¢x. The
corresponding characteristic roots, Aq, A,, ..., Ak, although real, need not be distinct.

the K-characteristic roots in the same order, in a diagonal matrix,

A O - 0

0 A 0
A: 2 . e

0 0 - Ag



CHARACTERISTIC ROOTS AND VECTORS

Then, the full set of equations

Ac, = A,
1s contained in

AC = CA.

Because the vectors are orthogonal and ¢j¢; = 1, we have

cic; ¢ cick

! ! !
L% Y ¥ v) T CCk
CC-= )

! ! !
| Ck€1 €€ -+ CkCg |



CHARACTERISTIC ROOTS AND VECTORS

The diagonalization of a matrix A is

C'AC = C'CA =1A = A.

The spectral decomposit?’on of A is

K
A = CAC' = 3 Meyej
k=1



THEOREM A.3 Rank of a Product

For any matrix A and nonsingular matrices B and C, the rank of BAC is equal to the
rank of A. Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43),
rank(BA) = rank(A'B’), and applying (A-45) again, rank(A'B’) = rank(A"’)
because B’ is nonsingular if B is nonsingular [once again, by (A-43)]. Finally,
applying (A-43) again to obtain rank(A') = rank(A) gives the result.

THEOREM A4 Rank of a Symmetric Matrix

The rank of a symmetric matrix is the number of nonzero characteristic roots
it contains.



TRACE OF A MATRIX

The trace of a square K x K matrix is the sum of its diagonal elements

THEOREM A.7 Trace of a Matrix

The trace of a matrix equals the sum of its characteristic roots.



TRACE OF A MATRIX

Some easily proven results are
tr(cA) = c(tr(A)),
tr(A’) = tr(A),
tr(A + B) = tr(A) + tr(B),
tr(Ix) = K.
tr(AB) = tr(BA).



Determinant of a Matrix

THEOREM A.8 Determinant of a Matrix

The determinant of a matrix equals the product of its characteristic roots.

C'AC = A,
IC’AC| = |A].
|C'AC| = |C’'|-|A]-[C| = [C’'|-|C|-|A| = |C'C|-|A] = [I|-|A] =1-]|A]
= |A|

[A].



QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

n

q = szix]{li]‘.

i=1j=1

This quadratic form can be written
q = x'Ax
where A is a symmetric matrix. In general, ¢ may be positive, negative, or zero; it depends

on A and x. There are some matrices, however, for which g will be positive regardless
of x, and others for which ¢ will always be negative (or nonnegative or nonpositive).



QUADRATIC FORMS AND DEFINITE MATRICES

For a given matrix A,

1. Ifx'Ax > (<) 0 for all nonzero x, then A is positive (negative) definite.
2. If x’Ax = (=)0 for all nonzero x, then A is nonnegative definite or positive
semidefinite (nonpositive definite).
Recall that a symmetri-c matrix can be decoﬁlposed into
A = CAC'.
Therefore, the quadratic form can be written as
x'Ax = x'CAC'x.
Lety = C’x. Then

n
xX'Ax = y'Ay = 2)\,-}1,%
I=



QUADRATIC FORMS AND DEFINITE MATRICES

THEOREM A.11 Definite Matrices

Let A be a symmetric matrix. If all the characteristic roots of A are positive
(negative), then A is positive definite (negative definite). /f some of the roots are
zero, then A is nonnegative (nonpositive) definite if the remainder are positive
(negative). If A has both negative and positive roots, then A is indefinite.



