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Basics of Regression Analysis

In this session:
® Regression is a statistical method that attempts to fit a model to data to quantify the
relationship between the dependent (outcome) variables and the predictor
(independent) variable(s).
® Two-variable linear regression.

® Multiple-variable linear regression.

For more extensive reading, refer to Chapter 11 and 12 of Newbold, P., Carlson, W., and Thorne,

B. (2010). Statistics for Business and Economics, Pearson, 7t Edition




Two-Variable Linear Regression

Example:

Suppose we manage 22 retail stores in 22 different locations. We have data on the disposable

income per household (X) and retail sales per household (Y) by store/location in the following

table.
Retail Store Income (X) Retail Sales (Y) Retail Store Income (X) Retail Sales (Y)
1 f 55,641 f 21,886 12 f 57,850 £ 22,301
2 f 55,681 £ 21,934 13 £ 57,975 £ 22,518
3 f 55,637 £ 21,699 14 f 57,992 £ 22,580
4 f 55,825 £ 21,901 15 f 58,240 £ 22,618
5 f 55,772 f 21,812 16 f 58,414 £ 22,890
b f 55,890 f 21,714 17 f 58,561 £ 23,112
7 f 56,068 £ 21,932 18 £ 59,066 £ 23,315
8 f 56,299 £ 22,086 19 f 58,596 £ 22,865
9 f 56,825 £ 22,265 20 f 58,631 £ 22,788
10 f 57,205 f 22,551 21 f 58,758 £ 22,949
11 f 57,562 f 22,736 22 f 59,037 £ 23,149




Two-Variable Linear Regression

What is the relationship between income and retail sales? One way to visualize the relationship

is to do a scatterplot.

Scatter Plot: Retail Sales (Y) and Income (X)
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Regression Model

e The classical linear regression model is a way of examining the nature and form of the

relationship among two or more variables.

i = B+ B2 X1 +ue
Where:
* Y;isthedependentvariable
* X;;istheindependentvariable (called also regressor)
* [, B, are called (population) coefficients or parameters. They are unknown need to
be estimated by running a model.
* u;is the error term or disturbance term. We assume is normally distributed with

mean 0 and variance o2.




How are the values of coefficients determined?

® 3, and B, are chosen so that the vertical distances (errors) from the data points to the fitted line are

minimised.

® The most common method used to fit a line to the data is known as Ordinary Least Squares (OLS)

® The method of OLS can be viewed as equivalent to minimising the sum of the squared error terms.

OLS: min Y.I_, @i?




How are the values of coefficients determined?

The OLS estimators are the solution to the problem

min Z i = min i{}; — 3, -53,x,)?
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Re-arranging yields:




How are the values of coefficients determined?

First order conditions (FOC):
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Two-Variable Linear Regression

* The slope coefficient estimator is

i=1(xi =) (i —y) cov(X,Y) cov(X,Y)sy ri

n _ 2\2 _ 2
,g:l(xi x) Sx SxSySx Sx

,32 —
Where r is the correlation between Y and X and sy (sy) is the sample standard deviation of Y (X).

The slope coefficient ;is an estimate of the change in Y when X changes by one unit.

* The constant or intercept estimator is
fr =Y — Box
Where y is the sample mean of Y and X is the sample mean of X..

Under maintained assumption on the error terms, it can be shown that the least squares
coefficient estimators are unbiased and have minimum variance (BLUE estimator)




Variability in the Regression Analysis

The total variability in a regression analysis, TSS, can be partitioned into a component

explained by the regression, ESS, and a component due to unexplained error, RSS:

TSS = ESS + RSS

with the components defined as:

1. Sum of squares total: TSS = Y™ ,(y; — ¥)?
2. Residual sum of squares error: RSS = Y™ . (y; — 9,)% = X" 1 (u;)?

3. Explained sum of squares regression: ESS = Y. 1(J; — }7)2




Variability in the Regression Analysis

The coefficient of determination, R?, for a regression equation is defined as :

2 ESS . RSS
- TSS TSS

* R?tells us how well the estimated regression explains the data. In other words, R? measures
the proportion of the total variation in Y explained by the regression model.

* The value of R? varies from 0 to 1 and higher values indicate a better regression
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R-squared

Example (cont’d). If we graph the estimated linear We can also compute the R? for this example:
relation in the same figure of the scatterplot, we
have

e Scatter Plot: Retail Sales (Y) and Income (X) RZ _ blz n?=1(xi —_f)z — 9199

o y =0.3815x + 559 . £=1(yi — y)z
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Multiple Linear Regression Model

We can generalize the two variable linear regression to multiple variable linear regression when

an outcome variable is determined by several independent variables.
Yi = Bo + b1X1e + BoXor + oo + BrXiee + Uy

Where:
« Y;isthe dependentvariable
* Xit, ..., Xyt arethe independent variables (called also regressors)

* Bo, b1, ..., By are called coefficients or parameters. They are unknown need to be

estimated by running a model.

* u; istheerrorterm or disturbance term.




The Assumptions Underlying the CLRM

In order to use OLS, a model must satisfy the following assumptions:

1. Linearity: the model must be linear in parameters (e.g., Y; = a + BX; + uy)

2. No multicollinearity - independent variables are not highly correlated between them
3. E(uy) = 0 -the expected value of error terms is equal to zero

4. Homoskedasticity - the variance of the error terms is constant

5. No Autocorrelation - no correlation between error terms

6. Cov(X; u;)

7. Error terms are normally distributed




Example - Taylor Rule
The Taylor rule is a simple monetary policy rule linking mechanically the level of the policy rate

to deviations of inflation from its target and of output from its potential (the output gap).

The Taylor Rule (1993) takes the following form:

it = Bo+ Br(m —1f) + B2 (Ve — ¥i) + ue

where « is the stabilizing interest rate of an economy (when r; = n{ and y, = y;),
(r; — m{) is the inflation gap between the actual values of the inflation (m;) and a desired

level (rzf ),

(v — y¢) is the output gap that is the difference between the real GDP and the potential
real GDP



Taylor Rule - Estimation Results

® We obtain the following estimation output in Eviews:

Dependent Variable: INT

Method: Least Squares

Sample (adjusted): 1976Q1 2020Q3
Included observations: 179 after adjustments

Variable Coefficient  Std. Error t-Statistic Prob.
C 0.576754 0.123247 4.679655 0.0000
INFLATION 0.165749 0.020664 8.020974 0.0000
OUTPUT_GAP 0.103249 0.040825 2.529047 0.0123
R-squared 0.291099 | Mean dependent var 1.300049
Adjusted R-squared 0.283043 | S.D. dependent var 1.331186
S.E. of regression 1.127159 Akaike info criterion 3.093896
Sum squared resid 223.6059 Schwarz criterion 3.147316
Log likelihood -273.9037 _ Hannan-Quinn criter. 3.115557
F-statistic 36.13584 | Durbin-Watson stat 0.055367
Prob(F-statistic) 0.000000




Estimation Results

- here the estimated value of the coefficients (8,, £; and £3,). .

Therefore the estimated value of the regression is:
Int; = 0.557 + 0.166 * inflation; +0.103 * output_gap;

B, and B, measure the change in the mean value of the dependent variable for each
unitary change of the associated regressors, holding all the other regressors as constant.

 For example: §; = 0.1657 means that a 1% increases of inflation causes a 0.166%
increase of interest rate.

* B, is the constant and it is positive. It informs us that if the economy was moving along

the stable path (i.e., inflation = target inflation and real GDP = potential GDP), then the

stabilising interest rate would be equal to 0.577.



Estimation Results

Gray Box: these are the standard errors.

Standard error is a measure of reliability or precision of the estimate

Standard Errors (SE) depend on the sample variance.
The greater the sample variance is, then the more dispersed the errors are about their mean

value and therefore the more dispersed y will be about its mean value.




Estimation Results

Red Box: R-squared (R?) is a measure of goodness of fit. How well the sample regression line
fits the dataset. It measures the proportion of the variation of the dependent variable that has

been explained by the regression.

Here is 0.29 which means that our model can explain 29% of the total variability of the

dependent variable.




Estimation Results

Blue Box: the t-statistic for statistical significance. The t-statistic is calculated as a ratio between

the estimated coefficient and the associated standard error.

Purple Box: the associated p-values (probability values).

P-Value rule:
®* fo,0me < a,thenwereject H,

® fp,ame > @, then we fail to reject H,,
In this case we are testing whether the coefficient is statistically significant. (e.g., Hy: f1 = 0).

When the null hypothesis is rejected, then the coefficient is significant and statistically different

from zero.




Estimation Results

Green Box: the F-test measures of the overall significance of the regression.

In other words, it tests the model which we estimated against a model with the constant as only
regressor. It tells us whether all the regressors (a part from the constant) are jointly significant or
not.

Whenever the probability value associated to the F-test is less or equal to 0.10, then we may

safely say that the overall significance of our model is ok.




Hypothesis Testing

e Test of significance is a procedure, which allows us to use the sample results to verify

whether a null hypothesis is true or false.

e The decision about the rejection or the not rejection of the null hypothesis is based on the

value of the test statistic, which we obtain from our data.

e We may test several single or joint hypotheses.




Hypothesis Testing - t test

e We want to test the following hypothesis:

Hy:B=B"vs H{:BZp"
e If we want to test the significance of a coefficient, then we want to test: Hy: =0 vs H;: 320
Note that the alternative hypothesis is a composite one (we do not know whether the true value is
larger or smaller than 0. But if we reject the null, we know for sure that it is not equal to 0).

e The test statistic will be constructed as follows:

A

. ,B _ ,BHO
SE(B)

e Conclusion of the test (for a two-sided test):

If the test statistic lies in the rejection area (i.e. |t|>t_crit ), then we reject the null hypothesis.
If the test statistic does not lie in the rejection area (i.e. [t|<t_crit ), we fail to reject the null

hypothesis.



Hypothesis Testing - t test

— + oo s
Reject Hy - 0 l Reject Hy

e The t-distribution is defined by the degrees of freedom. These are related to the sample size.

Degrees of freedom: n - k where K is the number of parameters (in the model)

e The 100(1 - a)% confidence interval for the population regression slope f; is given by

p1 — tn—k,“/ZSE(,é1) <P <P+ tn—k,“/ZSE(Bl)




Hypothesis Testing - F Test

e The interesting point is that we may also test several hypotheses at the same time. We have

already encounter such a possibility, when we discussed the F - test in the estimation output.

e Taylor claims that a conducive monetary policy should imply that 8; = £, = 0.5. We may
interpret this hypothesis by claiming that the two components, which determines the

monetary policy, should have the same impact, i.e. they have an equal weight.

e More specifically, we want to test the joint hypothesis
HO : ﬁl =0.5and ﬁz =0.5
H1:[(; #0.5and/or 3, 0.5




How to Perform a F-test

How to run an hypothesis test:

® Define Hy and H;

® Calculate the test statistic. This is given by the formula

RRSS —URSS T —k

test statistic = X
URSS m

where RRSS = RSS from restricted regression
URSS = RSS from unrestricted regression
T = number of observations
K =number of parameters (in the unrestricted regression)

m = number of restrictions




How to Perform a F-test

® Choose a “significance level” denoted as a. It determines the rejection area.

il

0 Fa

® Obtain the critical values (F,,-;;orF,) using distribution tables.

Critical values denotes the rejection area.




How to Perform a F-test

® Conclusion of the test:
If the test statistic lies in the rejection area (i.e. f = f,..i+ ), then we reject the null hypothesis.

If the test statistic does not lie in the rejection area (i.e. f < f.-i+ ), we fail to reject the null hypothesis.

Alternatively:

P-Value Approach

® This approach is widely used. Statistical software provides the p-value anytime a test is performed.

® P-Value rule;

® I pyqme < a,thenwereject H

® I pyque > a, then we fail to reject H,,
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