Maths & Stats Pre-Sessional Tutorial

Topic 5: Basic of Derivatives and Matrix Algebra - Solutions

Exercise 1

Find the first derivative of the following functions:

a)
$$x^2 + 3x + 1$$

Solution: f'(x) = 2x + 3

b)
$$(2x-3)^5$$

Solution: General Rule: This is a case of h(x) = f(g(x)), where g(x) = 2x - 3 so :

$$h'^{(x)} = f'(g(x)) * g'(x) =$$

$$5(2x - 3)^4 * 2 =$$

$$10(2x - 3)^4$$

c)
$$\frac{e^x}{x-1}$$

Solution: General Rule: This is a case of $h(x) = \frac{f(x)}{g(x)}$. We know that

$$h'^{(x)} = \frac{f'(x)g(x) - f(x)g'^{(x)}}{g(x)^2}$$
, so:

$$h'(x) = \frac{e^x(x-1) - e^x}{(x-1)^2}$$

d)
$$4x^3(2x-1)$$

Solution: General Rule: This is a case of h(x) = f(x)g(x). We know that

$$h'^{(x)} = f'(x)g(x) + f(x)g'(x)$$
. Therefore,

$$h'(x) = 12x^{2}(2x - 1) + 4x^{3}(2) =$$

$$24x^{3} - 12x^{2} + 8x^{3}$$

$$32x^{3} - 12x^{2}$$

e) ln(3x)

Solution: General Rule: This is a case of h(x) = f(g(x)), where g(x) = 3x so :

$$h'^{(x)} = f'(g(x)) * g'(x) =$$

$$\frac{1}{3x} * 3 = \frac{1}{x}$$

Exercise 2

Are functions (a), (b) and (e) in Exercise 1 concave or convex? Why?

Solution: In order to answer this question, we need the second derivative of each function.

- Function (a) $\rightarrow f''(x) = 2$ so this is strictly convex as 2 > 0.
- Function (b) \rightarrow Using again the chain rule, we have that $h''(x) = 80(2x 3)^3$. Therefore, this function is neither concave nor convex (its second derivative can be both positive and negative, it depends on where you evaluate it).
- (Function (e) $\rightarrow f''(x) = \frac{1}{x^2} < 0$ so this is strictly concave.

Exercise 3

Find the stationary points of the following functions. Are they max or min?

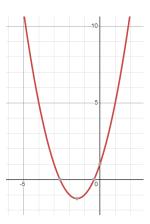
a)
$$f(x) = x^2 + 3x + 1$$

Solution: This is the same equation as exercise 1(a). We know that f'(x) = 2x + 3, so its only stationary point is:

$$2x + 3 = 0$$

$$x = -\frac{3}{2}$$

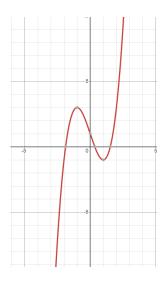
We now calculate the second derivative f''(x)=2 The second derivative is positive (> 0) and $x=-\frac{3}{2}$ is a minimum as the function is convex. Another way to see this is that f''(x) evaluated at $x=-\frac{3}{2}$ is 2.



b)
$$f(x) = x^3 - 3x + 1$$

Solution: In this case $f'(x) = 3x^2 - 3$ and f''(x) = 6 so this function is neither concave nor convex. The first order condition is f'(x) = 0, which in this case yields two points: 1 and -1. To establish whether they are local max or min, we need to evaluate the second derivative at these points (second order condition). If we consider 1, then the second derivative is f''(1) = 6 > 0 and x = 1 is a min.

If we consider -1, then the second derivative is and f''(-1) = -6 < 0 and X = -1 is a max.



Exercise 4

Consider the following matrices:

$$A = \begin{bmatrix} 5 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \\ 3 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$$

Find:

a)
$$D = AB$$

Solution: Since A is 2x3 and B is 3x2, they can be multiplied and the resulting matrix D is going to be 2x2:

$$D = \begin{bmatrix} 5 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 5*4+1*1+0*0 & 5*3+1*1+0*2 \\ 2*4+1*1-1*0 & 2*3+1*1-1*2 \end{bmatrix} = \begin{bmatrix} 21 & 16 \\ 9 & 5 \end{bmatrix}$$

b)
$$E = D + C$$

Solution: Since both matrices are 2x2 and B is 3x2, they can be added:

$$E = D + C = \begin{bmatrix} 21 & 16 \\ 9 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 21 + 2 & 16 + 1 \\ 9 + 2 & 5 + 3 \end{bmatrix} = \begin{bmatrix} 23 & 17 \\ 11 & 8 \end{bmatrix}$$

Solution: Since A is a 2x3 matrix and C is a 2x2 matrix, they cannot be multiplied as the number of columns of A is not the same as the number of rows of C.

d) G = B'C

Solution: B' is the transpose of matrix B. In the transpose matrix we invert rows and columns. Therefore, B' is a 2x3 matrix and C is a 2x2 matrix. They cannot be multiplied as the number of columns of B' is not the same as the number of rows of C.

Exercise 5

Solve the following pair of equations:

$$-v = -8x - 4$$

$$v = 20x + 2$$

This is a system of 2 equations with 2 unknowns. We can rewrite it as:

$$8x - y = -4$$
$$-20x + y = 2$$

Which in matrix form can be written as Ax = b, where

$$A = \begin{bmatrix} 8 & -1 \\ -20 & 1 \end{bmatrix} \qquad x = \begin{bmatrix} x \\ y \end{bmatrix} \qquad b = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

We can solve it as $x = A^{-1}b$, but to invert the matrix A we need its determinant:

$$|A| = 8 * 1 - (-1) * (-20) = -12$$

So the inverse of A is:

$$A^{-1} = -\frac{1}{12} \begin{bmatrix} 1 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} -\frac{1}{12} & -\frac{1}{12} \\ -\frac{20}{12} & -\frac{8}{12} \end{bmatrix}$$

And finally we have:

$$x = A^{-1}b = \begin{bmatrix} -\frac{1}{12} & -\frac{1}{12} \\ -\frac{20}{12} & -\frac{8}{12} \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{12} \\ \frac{64}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \\ \frac{16}{3} \end{bmatrix}$$

so
$$x = \frac{1}{6}$$
 and $y = \frac{16}{3}$