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Estimation and Hypothesis Testing

In this session:
®* We will review some basic statistical concepts in inferential statistics
® How can we infer from a random sample drawn from a population the population

parameters?

For more extensive reading, refer to Chapter 6, 7 and 9 of Newbold, P., Carlson, W., and Thorne,

B. (2010). Statistics for Business and Economics, Pearson, 7t Edition




Statistical Inference

Statistical inference draws conclusions for the population value of the parameter of interest

by using information from a sample.

We use statistical inference because we are interested in:
« population moments of the distribution: e.g., the population mean and the population
variance
« obtaining from our sample a single value, i.e., a point estimate for the parameter of
interest, or rather a range, i.e., an interval estimate.
* testing hypotheses about the population under investigation.

E.g., consumption; = a + fincome; + &;




Statistical Inference

Make inference about the population by examining sample results.

Sample statistics —l Population parameters
(known) INFERENCE (unknown but can be

estimated from sample

evidence)

Population




Estimation

To implement a model, we need to know its parameters. However, parameters are

unknown. We need to estimate them by using a sample

« Sample: A collection (x; x, ...,x, ) of observations of the variable X.
- Estimator 8: A function of the sample values:
0 =f(xy x5 o, X))
Note that the estimator 8 is a random variable that depends on the sample
information and its value provides approximations of this unknown parameter.

Its distribution is called sampling distribution

« Estimate: The particular numerical value taken by the estimator.




Estimation: Example
Consider a population parameter such as the population mean p.
* An estimator of a population parameter is a function of the sample information
that produces a single number called a point estimate. For example, the sample

mean X is an estimator of the population mean.

« Thevalue that X assumes for a given set of data is called the point estimate, x .
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Estimators Properties

Finite sample properties: they hold for a sample of any size
®* Unbiasedness

* Efficiency

Asymptotic properties: they hold when the sample size grows without bound

®* Consistency




Estimator - Unbiasedness

An estimator @ for the parameter 6 is unbiased if:
E(0) =06
® If an estimator is unbiased, then its probability
distribution has an expected value equal to the
parameter it is supposed to estimate. pf of W, —* —pdfof
* If we drew infinitely many samples and

computed an estimate for each sample, the / \

average of all these estimates would give the \

true value of the parameter.

® |[fthe estimatoris biased, then:

bias(8) = E(8) —




Estimator - Efficiency

* Suppose 8, and 8, are two unbiased estimators for 8. Then, 8, is efficient relative to 8, if
Var (6, ) <Var (8, ) for all 8, with strict inequality for at least one value of 6.
®* When comparing two unbiased estimators, we should prefer the one with lower variance

(i.e. the efficient one).
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Estimator - Consistency

Let be 8, an estimator for 8 based on a sample X1 X .., Xp Ofsizen.Then 0, is a consistent

estimator for @ if:

Ve > 0: Pr(|6,—6|>€¢)>0 asn- o
®* The probability that the estimator is close to the true value of the parameter increases to

1 as the sample size gets larger.

* |f@,is consistent, @ is the probability limitof 8,, : plimd = 6

n—-0o




Estimator - Consistency

® Consistency means that, as the sample size increases, the distribution of the estimator
becomes more and more concentrated about 6

®* Unbiasedness does not necessarily implies consistency (and vice versa). An unbiased
estimator is consistent if its variance shrinks to zero as n increases.

® Consistency is typically a minimal requirement of an estimator used in econometrics

£, (W) .

=40




BLUE Estimator

Linear estimator: An estimator 8 is said to be linear estimator of @ if it is a linear function of

the sample observations.

Best Linear Unbiased Estimator (BLUE): An estimator 0 is said to be BLUE if it is:
® Linear,
®* Unbiased

® Has the smallest variance in the class of all linear and unbiased estimators of 6.




Estimator

(6;)
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Sample Mean

A natural estimator of the population mean uy is the mean of the random sample, that is, the

sample mean:

F==) v

S|H

n
i=1

® The estimator Y is a random variable itself, as it depends on which elements of the
population were drawn randomly.
® To determine the properties of the estimator, we need to determine the mean of this

random variable E(Y), and its variance var(Y).




Sample Mean (optional)

The mean of Y is:

v E(}]Zy) S 102

The variance of Y is:

var var( Z‘/) =3 Zvar

o)
_n2 E 0Y+O— nCTY —Y

n

= >y =ny

=1




Sample Mean

The mean and the variance of the sample mean are:

* E(Y) =py

2

V) = %%
* var(Y) = -

Hence:
® Yisanunbiased estimator of uy .
* vpar(Y) shrinks as nincreases: var(¥,) >0 asn— o

* Thisimpliesthat Y, is a consistent estimator of uy
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Law of Large Numbers (LLN)

The consistency of the sample mean is known as the Law of

Large Numbers (LLN):

Let Yi. Ys.....Y, be independent and identically distributed
random variables with mean E(Y;) = py then:

plim(Y,) = 1y

m that is, the sample average Y, converges in probability to
(y as the sample size n grows indefinitely.

A further result about the sample mean Y, regards its asymptotic
distribution...




Central Limit Theorem (CLT)

Central Limit Theorem. Let Xy, X5, ..., X;, be a set of n independent random variables having
identical distributions with mean p, variance 02, and X is the mean of these random variables. As n
becomes large, the central limit theorem states that the distribution of

X — ux

Ox

7 =

Approaches the standard normal distribution.

We can say that:
* 7, hasan asymptotic standard normal distribution

* Z, converges in distribution to a standard normal distribution




Central Limit Theorem (CLT)
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Overview of Z-Scores

® A Studentearned a mark of 76 on an exam
®* How does a mark of 76 compare to other students?
® 76thelowest markin the class?

® Anyone earn a mark higher than 767

§

Z - Score

Z-Score -> standardized value that specifies the exact location of an X value within a

distribution by describing its distance from the mean in terms of standard deviation units.




n:r=]2h

Overview of Z-Scores




Overview of Z-Scores

® z-Scores describe the exact location of a score within a distribution
® Sign: Whether score is above (+) or below (-) the mean
®* Number: Distance between score and mean in standard deviation units
® Standard Deviation Unit: Standardized value(i.e., 1 SD unit =value of 1 SD before

standardization)

Example
@ z=-.50
o Sign: negative (-) so score is below the mean
Example o Number: .50 SD units from the mean
% z=+1.00

o Sign: positive (+) so score is above the mean
o Number: 1.00 SD units from the mean

[
b
—_
Il —t
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I
=0 +.0 2.0 -2.0 -1.0 z=0 +1.0 +2.0




Overview of Z-Scores

®* How to transform a X value to z-Score:
X —
o
®* They will produce standardized distributions: distribution composed of scores that have

been transformed to create predetermined values for p and o; distributions used to make

dissimilar distributions comparable.

® Characteristics
® Same shape as original distribution
®* Mean will always equal zero (0)

® Standard deviation will always equal one (1)




Overview of Z-Scores

® Advantages:
® Possible to compare scores or individuals from different distributions
® Results more generalizable

® z-Score distributions have equal means (0) and standard deviations (1)

— 34.13%

\

N\

13.59%

2.28%




Probability and Normal Distribution

®* Example

* p(X>80)=7?

®* Translate into a proportion question: Out of all possible marks, what proportion consists of
values greater than 80”7

®* The set of “all possible marks” is the population distribution

®* We areinterested in all the marks greater than 80”, so we shade in the area of the graph to

the right of where 80” falls on the distribution




Probability and Normal Distribution

Example (continued)

< Transform X =80 to a ~score

2= (X—p)/o=(80-68)/6=12/6=2.00

&
A

>2.00) = ?

&
e

i

Express the proportion we are trying to find in terms of the =score: p(z

By Figure 6.4, p(x > 80) = p(z> +2.00) = 2.28%
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Probability and Normal Distribution

® How to calculate Probabilities?

Mean Z




Probability and Normal Distribution

Mean Z




Probability and Normal Distribution

Mean Z




Overview of Z-Scores

®* Example:
® Assume a normal distribution with p=58 and 6 = 10 for average speed of cars on a section
of interstate highway.

®* What proportion of cars traveled between 55 and 65 miles per hour?

P(55<X<65)=7?
®* What proportion of cars traveled between 65 and 75 miles per hour?

P(65<X<75)=?

$

Step 1: Convert X values to z-Scores

Step 2: Use Unit Normal Table to convert z-scores to corresponding proportions
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Introduction

In statistical inference, we commonly want to:
® Learnthevalue of parameter = Use an estimator.
®* Test if parameter’s value equals specific value (e.g., from theory or intuition) = Use

hypothesis testing.

We may be interesting in answering some questions like “Does a job training programme

effectively increase average worker productivity?”

\ 4

A method for answering such questions, using a sample of data, is known as hypothesis

testing.




Introduction

Steps to perform hypothesis testing:

® State the null hypothesis and the alternative hypothesis.
® Selectthe test statistic and determine its distribution.

® Selectsignificance level.

® Perform test statistic using data in your sample.

® Reach a decision about the null hypothesis you stated.




Null Hypothesis [ Alternative Hypothesis

® The true population value of the parameter is unknown.
® Hypothesis - A statement about the value of an unknown population parameters.

® The two complementary hypotheses in a hypothesis testing are called the null hypothesis

H, and the alternative hypothesis H; :

* Null hypothesis H : the hypothesis to be tested. Formation of H is navigated by
empirical evidence, intuition or financial/economic theory.

* Alternative hypothesis H; contains all the other possible outcomes.



Significance Level

® \We choose the significance level a. This along with the distribution of the test determines

the critical value.

® Significance level a usually is equal to 0.01, 0.05 or 0.10.

® The decision rule depends on the way H; is formulated.
* Ho: pu=po;Hyt u>py
Reject H if test statistic value > critical value corresponding to a.
* Ho: pu=po;Hyt p<py
Reject HO if test statistic value < - critical value corresponding to a.
® Ho: p=po;Hyt p# o
Reject HO if test statistic value < -critical value corresponding to a/2 or test statistic

value > critical value corresponding to a/2.




Rejection Area

The level of significance and the rejection region

Level of significance = a +Represents
critical value

Ho: o= 3 a” g*
. Rejection
Hl‘ F 3 Two-tail test ‘W/} 0 #L region is
z shaded
Ho:u>3 =
1 Upper-tail test g

E a>/\
Ho <3 o

Lower-tail test 2 & 0




Hypothesis Testing

Consider the random sample x4 x; ...,x, drawn from a population X~N(u, a2)).

We want to test hypothesis on the mean, e.g., u = ug

We need to distinguish two cases:

* population variance g is known;

* population variance o is unknown.




Hypothesis Testing

Test for the mean of a normal population when population variance a2 is known.

Hypothesis
Tests for p

| |
o Known o Unknown

Consider the test

H, : u= The decision rule is:

X —Hg Sz
CR
Jn

Note that the sample mean X~N(u, 5% /N). Hence, its standardized version has a standard

H, :U> W, RejectH, if z=

(Assume the population is normal)

normal distribution.




Hypothesis Testing

Ho : jp = p X —
0= Mo Test statistic = o 1o N(0,1)
H, f=> [o U/\/ﬁ
|
E Reject Hp
Do not reject Hy ()
() - /

Note that: P(Z > z,) = «




Hypothesis Testing - Example 1

Example: Tom is evaluating his energy bill. He believes that the energy bill is normally

distributed with variance 100. He looks at the bills in the past 64 months, which averages at
£53.1 per month. He would switch to a new energy provider if it does not cost him more than
£52 per month. So he tests the hypothesis that the mean energy bill is at most £52 at the a =

0.10 level, in which case he would stay with the current provider.

®* The null hypothesisis Hy: u = 52
®* The alternative hypothesisis Hy: u > 52

® The test statisticis

Z = =0 = (0.88

WA / /i




Hypothesis Testing - Example 1

Reject H,

2 Do not reject H, T ; Reject H, :
.28
0 1.2

z=0.88

Do not reject H, since z=0.88 < 1.28

(there is not sufficient evidence that the
mean bill is over $52)

So Tom will change his current energy provider.




Confidence Interval Estimators: Definitions

* Aconfidence interval estimator for a population parameter is a rule for determining
(based on sample information) an interval that is likely to include the parameter.

®* The corresponding estimate is called a confidence interval estimate.




Hypothesis testing

Test for the mean of a normal population when population variance 2 is unknown.

Hypothesis
Tests for p
[

o Known o Unknown

Consider the test

o The decision rule is:

Ho TH=Hy =

H, >y, Reject H, if t=——H0 -t
(Assume the population is normal) ﬁ

We perform a t-test




T-statistic

The t-statistic or t-ratio is the standardised sample average:

And it follows the Student's t distribution with n-1 degrees of freedom.

If the sample size is:

* sufficiently large, then the Central Limit Theorem (CLT) implies that approximately:

t~N(0,1)

* small, then it can be shown (see my additional notes) that the t-statistics follows the

Student t distribution with (n-1) degrees of freedom




Hypothesis Testing - Example 2

Example: It has been reported that the average cost of a hotel in London is £168 per night. A

travel agency gathers a sample of 25 hotels in London and finds that the average cost is
£172.50 and the standard deviation is £15.40 from the sample. The travel agency wants to
test this claim at a=0.05.

®* Thenull hypothesisis Hy: u = 168
®* The alternative hypothesisis Hy: u + 168

® The test statisticis

7 172.5 — 168
P — 1.46

S/\/ﬁ 15.4/\/2_5




Hypothesis Testing - Example 2

Ho: 1 =168
/2=0.025 /2=0.025
H,: L # 168 . =
<+ > :I‘ >
Reject H, L Do not reject H, I Reject H,
tht.a 0 tnt,a2
-2.0639 146 2.0639

1 o isunknown, so

use a t statistic | — X—j; LI25-166

_ Critical Value: = S/\/H = 15.4/5

=1.46

t, 025 =1 2.0639 Do not reject H,: not sufficient evidence
that true mean cost is different than S168




Hypothesis Testing - Type | and Type Il Errors

Because hypothesis test is based on probabilities, there is always a chance of making an

incorrect conclusion. When you do a hypothesis test, two types of errors are possible:

* Typelerror: reject Hy when H is true.

* Typell error: fail to reject Hy when Hj is false.

State of nature

Decision Hy 1s true Hy 1s false
Reject Type | error  No error
Do not reject  No error Type |l error

® Pr(typelerror)=Pr(reject H | H,yistrue)= a - ais the significance of the test

* Pr(type Il error) = Pr (fail to reject Hy | Hy is false) = B

* 1-Bisthe power of the test; i.e., the probability of not committing type Il error.
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