Photovoltaic technology

Photovoltaic effect

- classical photoelectric effect experiment
- semiconductor

Electrical properties of semiconductors

- band model: quantum theory, conductance band, valence band, band gap
- impurities: addition of impurity *doping*, *donor* impurity, n-type (negative charge carriers); *acceptor* impurity, p-type (positive charge carriers); electron & hole

P-N junctions

- established potential depletion region, build-in potential of $V_{\rm bi}$ at equilibrium
- ideal diode law: relationship between I and V under external voltage
- diode behaviour: forward/reverse bias, I-V diode behaviour under external voltage

Semiconductors

- effect of illumination: an photon of light produce an electron-hole pair
- I-V curves under illumination: (light-generated current) (dark diode current)

Solar cells operating parameters

- Short circuit current (I_{SC}) the maximum current when V = 0, hence $I_L = I_{SC}$
- Open circuit voltage ($V_{\rm OC}$) the maximum voltage when I=0, hence $V=V_{\rm OC}$
- FF (fill factor) = $V_{mp}I_{mp}$ / V_{OC} I_{SC} hence P_{max} = FF V_{OC} I_{SC}
- effect of temperature: NOCT (Nominal Operating Cell Temperature)

Ideal solar cell performance

- every incoming photon of light will produce an electron-hole pair
- each electron-hole pair result in one electron flowing through the external circuit

Performance loss mechanisms

Optical losses

- blocking of incoming radiation by the top contacts
- surface reflection of incoming light
- reflection of light from rear contact

Recombination losses

- radiative recombination
- auger recombination
- recombination at trap sites

Band gap losses

- below or above band gap

PV module and PV systems

- -BOS (balance of system): solar cell, batteries, inverters, controllers and structure
- Standard testing conditions (STC): 1 kW/m² of AM1.5 irradiance, cell *T* of 25°C
- PV module output under STC: "peak Watt" or W_p nominal capacity.

Types of solar cell materials and technologies

- efficiency, price, current market

Environmental, economic and social impacts