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ARTICLE INFO ABSTRACT

Keywords: Solar assisted air source heat pump shows great potential as a promising energy-saving heating technology,
SOlar-_a_SSiSted air source heat pump which integrates solar collector and air source heat pump. It is widely considered for supplying hot water, space
Coefficient of performance heating and/or space cooling in the domestic sector. The performance of solar assisted air source heat pumps can

System configuration
Solar collector
Thermal energy storage

be evaluated in system level by parameters such as coefficient of performance, seasonal performance factor,
energy consumption, solar fraction as well as initial and operating costs, and in component level by parameters
such as efficiencies of solar collection and thermal energy storage. Their performances are affected by many

Peffosting factors such as system configuration, components size, working fluid, working conditions and weather condi-
tions. This paper presents a comprehensive review on the recent advances in solar assisted air source heat pump
for the domestic sector in terms of system configuration, solar collectors, thermal energy storage, defrosting
method and the perspective areas of further investigations. The results of this review confirm that research is still
required to improve the performance of such a combined system and reduce initial cost compared with existing
heating systems based on hydrocarbon combustion. The information presented in this paper is beneficial to the
researchers, small and medium-sized enterprises suppling renewable energy system technologies, heating en-
gineers and service workers, energy policy and decision makers, environmental activists and communities.

air pollutants during heat provision from hydrocarbon combustion are
39%, with fossil fuel being the main heat source today [1]. To achieve
1. Introduction the UK’s target of the net-zero emissions of GHGs by 2050, the domestic
heating sector has to be decarbonised [3]. Many countries have a
Heat pumps (HPs) can be considered as both energy efficient and strategy by 2050 to increase the share of renewable energies. In com-
renewable energy technology [1]. The use of this technology to increase bination with renewable energy, an increase in HPs in heating provision
buildings energy efficiency by utilizing low-grade thermal energy from is expected. By 2030, HP should provide 22.1% of the domestic heating
existing heating supply systems is of significant interest today. However, compared with 5% in 2019 [1]. The coefficient of performance (COP)
to significantly reduce energy consumption and to improve the perfor- and seasonal performance factor (SPF) are parameters to evaluate the
mance of HPs, many studies are devoted to increasing the share of performance of HPs [4]. HPs are divided into air source heat pump
renewable energy. According to the International Energy Agency (IEA), (ASHP), ground source heat pump (GSHP), water source heat pump
worldwide, thermal energy accounts for more than 50% of energy (WSHP) and soar assisted heat pumps (SAHP). Depending on the pur-
consumption, with about 45% consumed in residential and commercial pose of application, climate conditions, technical and economic pa-
buildings [1]. In the UK, heating took up 48% of the total energy con- rameters, each of them has its own advantages and disadvantages.
sumption in 2013, and the domestic sector accounted for 57% of the Table 1 lists of review papers on solar-assisted ASHPs (SAASHPs,

entire heating demand [2]. Emissions of greenhouse gases (GHGs) and
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Nomenclature Greek Letters:
Nsc efficiency of solar collector
A area, m? p density of air, kg/m?>
cop coefficient of performance o
cp specific heat capacity, J/(kg K) AbbreVlaﬂUTf-‘
Eq. average amount of energy received per square meter of a ASHP  air source heat pump
solar collector, W/m? DX-SAASHP direct expansion solar-assisted air source heat pump
HC heating capacity, W GHG greenhouse gases
L average monthly value of atmosphere lucidity GSHP  ground source heat pump
Qco heat pump heating capacity, W GWP global warming potential
Qhd heating demand, W HP heat pump
Qioss heat loss, W HW hot wat(?r
Qmax maximum thermal energy storage capacity, J IEA International Energy Agency
Qsc thermal energy collected by a solar collector, W IX-SAASHP indirect e)fpansion s?lar—assisted air source heat pump
SF solar fraction (solar heating ability) opp ozone depletion potential
SPF seasonal performance factor PCM phase change material
t time, s PV photovoltaic
Ta ambient air temperature, °C PV/T photovoltaic/thermal
Teon condensing temperature, °C SAASHP solar—ass%sted air source heat pump
Tmax temperature of storage tank fully-charged, °C SAGSHP solar-assisted ground source heat pump
Trmin temperature of storage tank fully-discharged, °C SAHP solar-assist.ed heat pump
Tsc,in water/refrigerant temperature at the inlet of solar SC space cooling
collector, °C SFH single family house
1% volume, m® SH space heating
Weom  work done by compressor, W SWH solar water heater
Wean work done by fan, W TES thel.rmal energy storage
Wyump ~ work done by pump, W VFD variable frequency drive
Wiot total work done by compressor, fans, pumps, W WSHP  water source heat pump

vapour-compression HPs). Two approaches to solar boosting that have
reported are direct expansion SAASHP (DX-SAASHP) [5-9] and indirect
expansion SAASHP (IX-SAASHP) [10-23]. In the DX-SAASHPs, refrig-
erant is circulated directly through the solar collectors which serve as
the HP evaporator. Investigations on DX-SAASHPs were devoted to
exergy analyses, performance evaluation of the entire system and indi-
vidual components, refrigerants, component and system modelling,
solar thermal collector modelling, optimal design and control, various
applications such as hot water (HW) provision, space heating (SH),
drying, desalination, vaporisation of liquid fuels. From these reviews,
further trends were identified such as the use of DX-SAASHP for space
cooling (SC), developing highly efficient/low-cost/building-integrated
collector-evaporator, establishing DX-SAASHP standardization for the
design/production and assembling, and exploring optimal control stra-
tegies. DX-SAASHPs have not been widely used compared with IX-
SAASHPs. In IX-SAASHPs, an intermediate heat transfer fluid is circu-
lated through the solar collectors and the installation is simplified but
requiring an additional heat exchanger. An IX-SAASHP performs better
than either ASHP [24] or solar heating [25]. For example, application of
serial IX-SAASHP in Canadian domestic sector reduced GHG emission by
19% [26]. The use of an air source evaporator in addition to a solar
collector allows extracting heat from the ambient air when solar radia-
tion is not available, which expands the capability of the system.
However, there is an issue of frost formation of the outdoor unit when
the ambient air temperature is below zero, especially in humid regions.
The COP and SPF of the system can be improved by integrating thermal
energy storage (TES) [27,28]. Reviews on IX-SAASHPs focused on types
of solar collectors including photovoltaic/thermal, energy and exergy
analyses, components modelling, environment-friendly refrigerants,
system performance and efficiency parameters, hydraulics and control,
mathematical modelling approaches (artificial neural networks, life
cycle assessment, TRNSYS, etc.), improvement in cycle design (cascade
cycle, ejector enhanced cycle, etc.), different applications (SH, drying,
desalination, etc.), and market and economic analyses.

Many theoretical, numerical simulations and experimental studies
on SAASHP have been conducted in recent years. The utilization of
SAASHP for HW and/or SH as well as SC has shown great achievements
in decarbonization of heating and cooling. So far, few comprehensive
reviews have focused on recent advances in SAASHPs for the use in
domestic sector. This paper was motivated to thoroughly review the
research developments in SAASHPs for domestic heating. This paper
aims at providing a comprehensive review on the state-of-the-art of
SAASHPs. Fig. 1 summarizes the framework of this review paper. This
review is structured in such a way that the influence of three key com-
ponents: solar thermal collectors, TES (sensible and latent heats) and air
source evaporator including defrosting methods.

2. Design of solar-assisted air source heat pumps

SAASHPs (see Table 2) include DX-SAASHP, IX-SAASHP and hybrid
systems. In the DX-SAASHPs, the solar collector serves as an evaporator
whereas in the IX-SAASHPs, a heat exchanger connects the refrigerant
and water loops. The DX-SAASHPs mainly include basic and dual-source
DX-SAASHPs. Compared with basic DX-SAASHP, the dual-source DX-
SAASHP has an extra air source heat exchanger [29]. The IX-SAASHPs
mainly include serial and dual-source systems. In the IX-SAASHPs, a
heat exchanger is used to transfer heat from the solar collector to
refrigerant. In the hybrid system, an ASHP is parallel to the solar HW
loop. Some special SAASHPs have been studied, such as two-stage DX-
SAASHP, vapour ejector-enhanced DX-SAASHP, auto-cascade IX-
SAASHP, composite IX-SAASHP and trans-critical hybrid system.

The performance of SAASHP is evaluated by COP, SPF and solar
fraction (SF). COP is defined by Eq. (1) [30]

COP = Qco/‘/Vlm (1)

where Q. is the heating capacity and Wy is the total work done by the
compressor, fans and pumps given by Eq. (2)
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Wit = Wran + Weom + Wpump

(2)

SPF is the seasonal performance factor that evaluates the efficiency
over the whole heating season, the ratio of the total thermal energy
delivered by the SAASHP to the total electric energy consumed by
compressor, pump and fan, given by Eq. (3).

SPF = / Qcodt/ / Wit

where t is time.
The SF is the solar fraction defined by Eq. (4) [31]

SF = (Qsc -

- Qloss ) / th

3)

4

where Q. is the average amount of thermal energy collected by a solar
collector, Qjoss is the heat loss of the system and Qg is the heating

Table 1

Previous reviews on solar-assisted vapour-compression HP systems.
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demand of the building.

The investigations methods on various SAASHPs available in litera-
ture are briefly summarised in Table 3. It is apparent that basic DX-
SAASHP and serial IX-SAASHP draw most attention. Experiments and
theoretical analyses are two of the most common research methods.
Simulation methods, especially using TRNSYS software, is mainly
employed to study IX-SAASHP.

2.1. Direct expansion system

The DX-SAASHPs (see Figs. 2 and 3) use solar collectors as their
evaporators to achieve higher COP due to higher evaporation temper-
ature. Simulation results by Chow et al. showed a year-average COP of
6.46 [32]. Bare solar collectors (roll-bond evaporators) are preferably
used in DX-SAASHPs to reduce the solar radiation loss by glass reflection

System

Reference

Contents

DX-
SAASHP

SAHP

Kara et al., 2008 [5]

Omojaro and Breitkopf, 2013 [6]

Amin and Hawlader, 2013 [7]
Facao and Carvalho, 2014 [8]

Shi et al., 2019 [9]

Ruschenburg and Herkel, 2013
[10,11,12]

Ozgener and Hepbasli, 2007 [13]
Haller et al., 2012 [14]
Chu and Cruickshank, 2014 [15]

Kamel et al., 2015 [16]

Buker and Riffat, 2016 [17]

Wang et al., 2017 [18]

Poppi et al., 2015 [19]

Mohanraj et al., 2018 [20,21]

Wang et al., 2020 [22]

Sezen et al., 2021 [23]

Review on DX-SAASHP

e Mathematical model for exergy assessment

Review on DX-SAASHP
Shortage of studies for SC

Common-used refrigerants

Key components and important characteristics

e Parameters for performance evaluation

Review on DX-SAASHP

Review on DX-SAASHP for HW, drying and desalination in Singapore

o Novel method to analyse DX-SAASHP for HW
e DX-SAASHP systems and the performance parameters

Collectors in details

Optimal designs and control

Future development trends

Other components and refrigerants

Review on simulation for collectors and the whole systems
Applications in HW, SH, desalination and vaporisation of liquid fuels

representation of SAHP: SAASHP, solar-assisted GSHP (SAGSHP), solar-assisted water source HP (SAWSHP), GSHP, ASHP,

WSHP and photovoltaic/thermal (PV/T) systems

Analyses of market factors

Economic analysis
Applications of PV/T systems

Key system components
Common-used refrigerants

Market-available systems in terms of companies, functions, configurations, heat sources, and solar collectors

Review on energy and exergy analyses of SAHPs: SAASHP and SAGSHP
Review on component models for SAHP: SAASHP and SAGSHP

Review on SAASHP systems in Canada

Parameters for performance evaluation

Systems used in Canadian residential sector

e PV/T technologies and HP systems

Review on SAHP for HW: SAASHP, SAGSHP and PV/T

Parameters to evaluate system performance and efficiency
Review on SAHP for HW: SAASHP, SAGSHP and PV/T
SAASHP system analyses in first and second laws

e Review on SAHP for the domestic sector: SAASHP, GSHP, photovoltaic (PV) and PV/T
e Performance parameters at thermal energy, PV, building and economic levels

e Hydraulics and control
Economic analysis

Review on SAHP: SAASHP, SAGSHP and PV/T

e Mathematical model for SAHP (energy and exergy analyses, artificial neural network modelling, transient system simulation,
life cycle assessment and control models)

inverter compressor)

and organic Rankine cycle
Common-used refrigerants

Available innovations for performance enhancement (latent heat source, collector/evaporator, heat pipe, PV/T technologies,

Improvement in cycle design: two-stage compression cycle, cascade cycle, vapour ejector enhanced cycle, trans-critical cycle

Economic and environmental analyses
Application of SAHP (drying, SH, and desalination) and limitations

e Review on simulations (mainly using TRNSYS software) and experiments on SAHP (SAASHP, PV and PV/T)

Performance parameters (at energy, economic and environmental levels)

Economic and environmental analyses

Comparison, limitation and future direction

Introduction on system configurations of SAHP (SAASHP and PV/T)

Analyses of the influence of ambient conditions (solar irradiance, air temperature, humidity and wind speed)
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oFlat plate
eCollector/evaporator
eEvacuated tube

o DX-SAASHP
o|X-SAASHP
eHybrid

eCycle reversing
eHot gas bypass
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Reliability ev';;g:‘a'f:r eElectric heater
(Defrosting)  / e Dehumidification

ePolymer coating
oPCM

Fig. 1. Framework of this paper.
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Table 2

Categories of vapour-compression SAASHP.

DX-SAASHP IX-SAASHP Hybrid SAASHP
Basic Serial Basic
Dual-source Dual-source

Two-stage Cascade Cascade

Vapour ejector-enhanced Composite Trans-critical

and to extract thermal energy from ambient air.

Fig. 3 shows the ideal thermodynamic cycle on the P-h diagram of the
DX-SAASHP system. The superheating at the inlet of the compressor and
the subcooling at the outlet of the condenser are indicated. In the actual
cycle, the flow resistance results in significant pressure drop at the
outlets of the evaporator and the condenser.

Evaporator can be arranged in series or parallel to the solar collector
in DX-SAASHPs. Fig. 4 shows a serial evaporator-collector system for
HW [29]. This system has COPs ranging from 3.5 to 2.5 as water tem-
perature increasing from 30 °C to 50 °C. Fig. 5 shows a parallel dual-
source DX-SAASHP [34]. This system exhibits better COP than the DX-
SAASHP shown in Fig. 3, especially at low solar irradiance [33,34,35].
The heat transfer rates in the solar collector and evaporator affect the
distribution of refrigerant flows and hence determine the COP. Experi-
mental results showed the COP of a DX-SAASHP in solar-source solely
mode 30%-50% higher than that in ASHP mode [33]. Numerical
simulation results showed that the averaged COP of a DX-SAASHP in
dual-source mode is 14.1% higher than that in solar-source-only mode in
low solar irradiance of 100 W/m? [34].

The DX-SAASHP of two-stage vapour-compression cycles has been
developed for high temperature (60-90 °C) application (see Fig. 6) [36].
Fig. 7 shows the two-stage vapour-compression cycles on T-s diagram.
The refrigerant evaporates in the solar collector to saturation state (8-1)
and is compressed by the low-pressure compressor (1-2). The super-
heating vapour (2) is cooled in the flash tank by saturated liquid (7) up
to saturated vapour (3). In the low-pressure cycle, the refrigerant is
throttled in the expansion valve (7-8) and feed the evaporator in the 8
state. For the high-pressure cycle, the saturated vapour is compressed by
the high-pressure compressor (3-4) and then condensed in the
condenser (4-5), and finally expands at the expansion valve (5-6).

Kuang and Wang designed a multi-functional DX-SAASHP for SH, SC
and HW provision, with a radiant floor, a fan and a water tank [37]. The
experiment expresses a COP of 2.1-2.7 for SH-only mode. In SC-only
mode, this system adopts a storage tank to balance the night cold

thermal energy storage and the daytime demand, but the cold energy
storage efficiency (30%) and COP (2.9) are not satisfactory. In HW-only
mode, the cycle provides 200-1000 L HW with a temperature of 50 °C
daily. It should be noticed that this system is only studied in single-
function modes. In multi-function mode, the interaction among com-
ponents may result in heat losses and requires more energy input. The
system in the multi-function mode needs to be further studied.

Vapour ejection can reduce pressure ratio of compressors and thus
improve system efficiency. Zhu et al. proposed a dual-nozzle vapour-
ejector to assist compressor and to reduce the energy consumption [38].
The arrangement of the vapour-ejector enhanced DX-SAASHP, as well as
its p-h diagram and vapour ejector construction are shown in Fig. 8 (a),
(b) and (c). The dual-nozzle vapour ejector connects the low-
temperature (air source) and the high-temperature (solar source)
evaporators. The simulation results of this system show that the COP and
heating capacity are 4.6%-34% and 7.8%-52%, respectively, higher
than those of the conventional vapour ejector-compression cycle. The
ratio of pressures can be further reduced for a larger temperature dif-
ference between the two evaporators.

The vapour ejector enhanced DX-SAASHPs have been further
developed in [39] and [40] (see Figs. 9-10). In [39], the superheated
vapour discharged by the compressor condenses (2-3) and then flows
into the throttle valve (3-4) and the liquid pump (3-6), respectively. The
low-pressure stream absorbs heat from air source (4-5). The high-
pressure stream evaporates to the superheated vapour in solar collec-
tor (6-7). The superheated vapour works as the primary flow of the
vapour ejector and expands to a two-phase flow with little liquid (7-7")
to entrain the vapour from the evaporator (5-5'). The two streams are
mixed in the mixing chamber (8) and are then compressed in the diffuser
(8-1) and the compressor (1-2). Theoretical analysis suggests that,
compared with the conventional HP, this system can lead to increases by
15.3%, 38.1% and 52.8% in the COP, heating capacity and heating
exergy output, respectively.

An adjustable DX-SAASHP system with a solenoid valve between the
condenser and the vapour ejector was analysed theoretically [40]. It has
a pure vapour ejector-compression mode and a pure solar-assisted
vapour ejector-compression mode. The superheated refrigerant vapour
condenses to saturated or subcooled states (2-3). In mode A, the liquid
works as the primary flow of the vapour ejector directly. In mode B, the
liquid evaporates (3-4) in solar collector and then works as the primary
flow. The two-phase fluid is separated into saturated liquid (5-6) and
saturated vapour (5-1) in the phase separator. The liquid part expands
to two-phase fluid (6-7) and then evaporates to saturated or



Table 3

Research methods of SAASHP systems.

DX-SAASHP IX-SAASHP Hybrid SAASHP
Basic Dual-source Two- Vapour ejector ~ Trans-critical — Serial Dual-source Cascade Compo- Basic Cascade Trans-
stage enhanced site critical
Experi-ment Practice [65,70,72,73,74,76, [33,37,162,163, - - [218,232,246] [41,42,47,48, [81,222] - [211] [64,47,48,66, - [56,11]
77,127,134,135,138, 164,201,202, 49,64,66,67, 96,180,181,182,
139,140,141,142,143, 216,243] 75,80,81,96, 205,233,238]
144,145,146,147,154, 101,104,165,
193,194,195,196,197, 166,167,168,
198,199,200, 204,205,209,
230,234] 229,236,244]
Lab [35,60,61,126,135,148, [29,215] - [228] - [78,169,170, [44,94,95,186, [50] [79,183] [51] [55]
149,150,192,213,217] 171,172,204, 187,214]
206,219,220,
221]
Simu-lation ~CARNOT Blockset - - - - - [62,173] - - - - - -
TRNSYS [207] [243] - - - [46,54,63,82, [46,63,231, - [211] [46,63,182, - [55,57,58,
90,97,165,169, 241] 184,185,205, 212]
174,175,176, 208,233,240,
205,219,220, 249]
221,245,249]
SOLSIM - - - - - [224] - - - [224] - -
Artificial neural network [139,145,147,234] - - - - - - - - - - -
Analy-sis First law [5,32,60,61,65,70,71, [29,33,34,207,215, [36,210] [38,39,40,226, [232] [31,47,66,68, [44,109,214, [52,210] [211] [31,47,43,79, [51] [56,212]
73,74,76,77,126,127, 216,243] 227,228,235] 69,75,78,96, 231,239] 66,96,179,
135,136,142,143,144, 101,109,165, 180,183,208]
151,152,153,154,155, 166,168,170,
156,157,158,192,193, 176,177,178,
194,195,213,223,230, 179,203,204,
237,242,248] 209,225,229]
Second law [5,74,77,155,156,158, [29,162,163,164,202] - [39,40,227,235] - [49,66,75,179] [214,222] - - [66,179] - -
159,223]
Economic [153,160,161,217,242] [201,202,207,215] [36] - - [41,54,78,80, [222,231] - - [161,182, - [57,212]
104,161,165, 185,179,
169,175,176, 208,247,249]
179,204,240,
249]
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Fig. 2. Schematic of a DX-SAASHP (heating) (reproduced from [32]).
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Fig. 3. P-h diagram of the DX-SAASHP [20].
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Fig. 4. Schematic of a DX-SAASHP for SC and HW (reproduced from [29]).

superheated states (7-8). This is the secondary flow of the vapour
ejector. The vapour part is then compressed (1-2). The simulation re-
sults suggest that the COP and heating capacity are 13.8% and 20.4%
higher than those of the conventional vapour-ejector enhanced vapour-
compression HP. On average, this cycle outperforms the vapour-
compression HP in COP by 25.1%. However, these concepts lack vali-
dations from practical experiments [45].

2.2. Indirect expansion system

IX-SAASHPs include serial and dual-source systems. In serial IX-
SAASHPs, the thermal energy collected by the solar collector heats up
the water in the water loop and the hot water is circulated to the
evaporator of the HP. Dual-source IX-SAASHP enables both ambient air
and solar energy as the heat sources. Generally, the systems of IX-
SAASHPs are more complicated than DX-SAASHPs.

Serial IX-SAASHPs use the thermal energy collected by the solar

Energy Conversion and Management 247 (2021) 114710

EEV 1 Receiver .
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4a

r—
N
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Compressor

Fig. 5. Schematic of a parallel dual-source DX-SAASHP [34].

collector as the heat source. To balance the heat demand and supply,
TES connects either to the solar collector and the evaporator (see Fig. 11
(a)) or to the condenser and the end use (see Fig. 11(b)). The TES also
works as a buffer to reduce the noise and voltage shocks caused by the
frequent start-up and shutdown of HP. In Fig. 11(a) SH by air is achieved
by condensers placed in rooms. In Fig. 11(b) SH by water is achieved by
circulating hot water to radiators. Although the utilisation of solar
thermal energy increases the HP performance, the system COP is
apparently lower than that of the HP due to the power consumed by the
additional components. Experimental results of a serial IX-SAASHP
showed the HP COP of 3.8 and its system COP of 2.9 [41]. Experi-
mental results of a similar serial IX-SAASHP showed the HP COP ranging
from 2.5 to 3.5, and the system COP is around 20% lower [42]. Fig. 12
illustrates a serial IX-SAASHP with dual TES tanks [43]. Compared with
IX-SAASHPs in Fig. 11 (b), this system can reduce the frequency of HP
start-up and shutdown.

Fig. 13 shows a dual-source IX-SAASHP which utilises both solar
thermal energy and ambient air as the heat sources. Two evaporators are
separately connected to an air-water heat exchanger and solar collector
loop. A TES tank is in the solar collector loop. The HP provides HW and
SH by air. Cai et al. conducted numerical and experimental studies of a
multi-functional dual-source IX-SAASHP [44]. In HW mode, when the
solar water temperature increases from 20 °C to 35 °C, the electricity
consumption increases by 16.5% and the COP increases by 15.9%. The
COP increases from 2.35 to 2.57 with the solar irradiance increasing
from 0 to 800 W/m?. In SH mode, when the solar water temperature
increases from 20 °C to 40 °C, the COP increases by 20.2%, and the
heating capacity increases by 42.6%. While the COP decrease by 26.3%
and heating capacity decreases by 7.5% with the increase in indoor air
temperature from 16 °C to 28 °C.

Numerical simulations were performed to compare the performance
amongst the serial and dual-source IX-SAASHPs and hybrid SAASHP
[46]. The results show that a hybrid SAASHP using a solar collector of
14 m? achieves an SPF of 3.65 and consumes 2317 kWh electricity, while
a serial IX-SAASHP using a solar collector of 30 m? achieves an SPF of
3.53 and consumes 2401 kWh electricity. A dual-source IX-SAASHP
using a solar collector of 14 m? achieves an SPF of 3.70 and consumes
2289 kWh electricity. It is seen that the performance of the dual-source
IX-SAASHP and hybrid SAASHP are almost the same. Due to the system
simplicity the hybrid SAASHP is more attractive. However, some
experimental studies draw opposite conclusions. Experimental studies in
[47,48] show a COP of 4.0 of a serial IX-SAASHP and a COP of 3.0 of a
hybrid SAASHP, respectively. Experiments in [49] found that a serial IX-
SAASHP can reach a COP of 2.95, and a dual-source IX-SAASHP can
reach a COP of 2.90.

Fig. 14 shows a novel component and system configuration proposed
based on conventional IX-SAASHP [50]. The composite heat exchanger
is used to replace the conventional water-to-water heat exchanger in
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serial IX-SAASHPs to absorb solar thermal energy and thermal energy
from ambient air. A composite heat exchanger is designed by inserting a
tube into a finned tube. Hot water from the solar loop flows inside the
inner tube and refrigerant flows in annulus. This system has three
working modes i.e. solar-only, air-only and dual-source modes. Experi-
mental results show that, compared with the air-only mode, in the dual-
source mode, the COP increases by 59% and the heating capacity in-
creases by 62% at the ambient temperature of —15 °C. When the tem-
perature difference between solar water and ambient air is 5 °C, the COP
and heating capacity in the dual-source mode are 49% and 51% higher
than those in the air-only mode.

The use of two coupled compression cycles may incur high capital
costs and electricity consumption. To reduce energy costs, a solar-
assisted auto-cascade HP using a single compressor with zeotropic
mixture R32/R290 has been proposed to maintain a wide range of
outdoor air and heating circuit temperatures (see Fig. 15) [52]. To
achieve an auto-cascade cycle, a phase separator is used with the
cascade heat exchanger. The compressed superheated vapour (1-2)
condenses to saturated or subcooled liquid (2-3). Then the liquid flows
through the sub-cooler I (3-4) and expansion valve I (4-5) into the flash
tank, where the two-phase fluid absorbs heat from the solar heating loop
(5-6). The refrigerant is separated into the R290 dominant liquid (6-6 1)
and the R32 dominant vapour (6-6v). The R290 dominant liquid is
passed through expansion valve II (6v-7) to the cascade heat exchanger
and vaporised completely (7-8). The R32 dominant vapour is trans-
ferred to the cascade heat exchanger (6v-9) and thoroughly condensed

via the sub-cooler II (9-10). Then the condensed fluid goes to the low-
temperature evaporator through expansion valve III (10-11),
absorbing heat from ambient air (11-12). Fluids from the low-
temperature evaporator flow back through the sub-cooler II (12-13).
Then it (13-14) is mixed with the vapour from cascade heat exchanger
(8-14) and returned to the compressor through the sub-cooler (14-1).
Simulation results suggest that, compared with conventional ASHP, this
novel system increases COP and volumetric heating capacity by 4.2%-—
9.9% and 4.4%-9.7%, respectively. These improvements greatly rely on
the heat absorption ratio and the composition of the zeotropic mixture.

Fig. 16 illustrates a composite IX-SAASHP with an HP parallel to the
solar collectors in the cold weather conditions in Canada [53,54]. The
hot water leaving the solar collectors is further heated up in the
condenser of the HP and then heat up the water in the TES tank. The HP
absorbs residual thermal energy after the heat exchange and cools the
water entering the solar collectors. The reduced collector inlet temper-
ature improves the collector efficiency and thus the COP. It requires a
lower capacity HP and consumes less electricity.

2.3. Hybrid system

In hybrid SAASHPs (see Fig. 17), ASHP and solar collector water loop
work independently. In Fig. 17(a) HW and SH by air is achieved by an
ASHP and a solar heating with a TES tank. In summer, the ASHP can
provide SC. In Fig. 17(b) an ASHP and a solar collector loop provide hot
water to a TES tank to achieve SH by water. Compared with serial sys-
tems, the hybrid SAASHPs are more widely used [10].

A single-stage vapour-compression HP cannot deliver heat above
50 °C at low ambient temperatures. To increase the temperature range
between the outdoor air and the heating circuit, two-stage cascade HPs
are used in the cold climate regions or to ensure the demand for a higher
temperature lift. A solar-assisted two-stage cascade HP is proposed by
Yerdesh et al. [51] where solar thermal collectors and a cascade ASHP
simultaneously heat up the hot water in the TES tank (see Fig. 18). It was
shown that combining a cascade ASHP with solar collectors increases
energy efficiency by 30% compared with a conventional two-stage
cascade HP. The cascade HP includes two single-stage cycles that
operates separately with two different refrigerants, the low temperature
cycle (LTC) and high temperature cycle (HTC). Using R32/R290
refrigerant pair, this system can have the maximum COP of 2.4 when the
condensing temperature is 50 °C and evaporating temperature is
—10°C.

A solar thermal collector can be integrated in a hybrid trans-critical
carbon dioxide (COy) HPs for SH, SC and HW (see Fig. 19)
[55,56,57,58]. In SH and HW mode, the COP and heating capacity are
about 2.3 and 6 kW [57,58], while in SC mode the COP and heating
capacity are 4 and 8 kW, respectively [55].
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3. Solar collector

Solar collector is an important component for thermal energy input
of SAASHPs. Flat plate collector is commonly selected in recent studies.
To absorb more thermal energy from ambient air, the collector/evapo-
rator is designed by coating solar selective materials on the surface of an
evaporator. Collector/evaporator is mainly used in DX-SAASHPs. In IX-
SAASHP, evacuated tube solar collectors draw more attention. Fig. 20
introduces the matching relation between solar collectors and system
configurations. Table 4 lists some open literature where collector/
evaporator and evacuated tube collector have been employed in
SAASHPs. It can be noticed that systems using advanced solar collector
can achieve a COP of 3-5. Especially, those for SH can work at ambient
temperature below 0 °C.

The thermal energy collected by a solar collector, Qs is determined
by Eq. (5) [59]

Qsc = Ai’]sc{l - a[(Tsc.in - Ta)/L] + b[(Tsc,in - Ta)/L]Z} (5)

where A, E, and 7 are the area, the average amount of energy received
per square meter and collector efficiency, respectively, a and b are co-
efficients determined by experiments, Ty i, is the water/refrigerant
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temperature at the inlet of solar collector, T, is the temperature of
ambient air, and L is the average monthly value of atmosphere lucidity.

3.1. Flat plate solar collector

Flat plate collectors are commonly adopted in SAASHPs. Bare (un-
covered) flat plate collectors enable to use thermal energy from solar
radiation and ambient air. The experiment of Sun et al. [60] suggests
that, at the outdoor temperature of 0-10 °C, the collector efficiency of a
bare solar collector ranges from 40% to 70%, where water vapour
condensation occurs on the solar collector. The experiment study of
Scarpa and Tagliafico [61] suggests that, due to water vapour conden-
sation on the solar collector, a DX-SAASHP using a bare collector ach-
ieves a COP of 5.8 at weak solar radiation.

There is a noticeable influence of collector area on system

performance. Increasing collector area can enhance the SF of a SAASHP
[30], almost in a linear relation [62]. Larger collector area can improve
COP since it brings more solar energy input [63]. Both system configu-
ration and collector area affect collector efficiency. With the same col-
lector area of 30 m?, the collector in a serial IX-SAASHP shows higher
collector efficiency (62%-70%) than that in a hybrid SAASHP (with a 7
of 54%-60%) [47,48]. With a smaller collector area of 20 m? in a serial
IX-SAASHP, the collector efficiency ranges from 33% to 47% [41].

To improve collector efficiency, collector plate can be coated with
black paintings [31,43,46,47,48,64,65,66,67,68,69]. Some collectors
use serpentine tube or other special tubes between the plates [35,65,70].
The simulation results of a DX-SAASHP using an uncovered and coated
collector with serpentine tube over a year showed daily COPs varying
from 1.7 (in summer) to 2.5 (in autumn) with an average value higher
than 2.0. [65]. The simulation results of a DX-SAASHP using a flat plate
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water pump

cold water supply

collector with spiral tube showed monthly COPs between 4.0 (in sum-
mer) and 6.0 (in winter) [70]. The “contradictory” COPs in summer and
winter are due to the high water temperature in summer which leads to
high condensation temperature and low system efficiency. In terms of
effect of weather conditions, the simulation results of a DX-SAASHP
using a flat plate collector with serpentine tube showed COPs from
3.83 to 4.69 in sunny days [71]. Especially, in rainy winter, the average
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COP can still achieve 3.3, with the lowest COP of 2.51. Similar conclu-
sions can be drawn from experiments where the average COPs vary from
5.21 to 6.61 [72,73]. At a rainy night, COP can still reach 3.11 [74].

A novel flat plate collector is shown in Fig. 21 [67]. With an area of
11 m?, this novel collector achieves an average collector efficiency of
67.2% at low operating temperature in a serial IX-SAASHP. The system
COP is 2.19 and the COP of HP is 2.55. As a comparison, another serial
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IX-SAASHP using a conventional flat plate collector obtains a collector
efficiency of 60.1% but a system COP of 3.08 [75].

3.2. Solar collector/evaporator

The heating reliability of DX-SAASHP is better than that of direct
solar heating, but still worse than that of ASHP. To further improve the
reliability of DX-SAASHP, both solar and ambient thermal energies can
be used by adding an air evaporator or using an uncovered flat plate
collector. For example, a collector area of 3.24 m?is considered ideal for
an uncovered flat plate collector in a DX-SAASHP [76].

To earn higher year-average COP, a larger flat plate collector can be
used but it is not economical [32]. Kaygusuz suggests that, when the
number of collectors is doubled, COP is increased by 37% while the cost
is increased by 65% [31]. Thus, to improve COP at low cost, collector/
evaporator, designed by coating evaporator surface with solar selective
materials, is a good alternative to extract more thermal energy. The
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average COP of a system using finned tube collector/evaporator is 2.94,
increasing by 8.1% than that of conventional ASHP [77]. The average
heating efficiency and exergy efficiency are raised by 20% and 8%,
respectively.

3.3. Evacuated tube solar collector

IX-SAASHPs and hybrid SAASHP for SH require large collector area
of flat plate collector. For a serial-hybrid SAASHP, a simulation study
reveals a reasonable collector area of 35 m? for a covered flat plate
collector [66]. To obtain a smaller system, the evacuated tube collector
is an alternative. Simulation and experimental results of a serial IX-
SAASHP using evacuated tubes show the maximum COPs of 6.33 and
6.38, respectively [78]. For a hybrid SAASHP using evacuated tube
collectors, the COP can be around 5 at the highest daily solar irradiance
[79]. The evacuated tube collector can be integrated with latent TES to
further improve the thermal performance. For example, an experiment
of a serial IX-SAASHP using both evacuated tube collector and latent TES
shows a COP of 10.03 [80].

4. Thermal energy storage

TES is used to balance the energy demand and supply. It is essential
for SAASHPs to mitigate solar energy discontinuity since an overcast for
more than 20 min can lead to an apparent decrease in outlet temperature
of the collector [83]. Both sensible and latent heat TESs are used in
SAASHPs. The seasonal TES is suitable to regions with larger seasonal
variations of solar energy availability and heating demand. Table 5
summarizes the studies involving latent heat and seasonal TESs. The
studies on the sensible heat TES are summarized in Tables 6 and 7. On
average, with optimisation in storage methods, systems can perform
better with an SPF around 4-5.

4.1. Sensible heat thermal energy storage

Typical air, geothermal and water source HPs make use of sensible
heat as heat sources. The sensible heat can also be used to store thermal
energy. Water and soil are widely used as the mediums for sensible heat
TES. The maximum capacity for sensible heat TES, Qnax, is determined
by Eq. (6) [30]

Qmax = chp(Tmu - Tmm) (6)

where p, V and c;, are the density, volume and specific heat capacity of
the TES medium. Tn,x is the temperature of TES tank fully-charged and
Tmin the temperature of TES tank fully-discharged.

Geothermal TES can be integrated into a serial IX-SAHP using
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Fig. 17. Hybrid SAASHP.

boreholes as the TES container (see Fig. 22) [84]. A numerical simula-
tion of a solar-geothermal hybrid HP showed that the system can save
energy by 2.08 TJ per year, equivalent to 70-ton standard coal and
corresponding to 234-ton carbon dioxide emission [85]. An experiment
demonstrated that the utilisation of ground TES helps to improve the
COP from 2.95 to 3.36 compared with SAASHP [49]. However, since a
deep borehole is required for sufficient heat exchange with ground, the
excavation increases the installation cost of geothermal heat exchangers.
Moreover, the heat stored in summer may not equal to the heat extracted
in winter, influencing underground temperature balance [85].

Water TES is more popular than geothermal TES since water has
higher thermal capacity and the manufacturing of water tanks requires
much less capital cost. Water tank with high degree of thermal stratifi-
cation shows 5.3% energy saving over one year than fully-mixed water
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tank [86] because uniform distribution of water temperature reduces
exergy [87]. Diffusers can be used to enhance thermal stratification. This
increases energy efficiency of the system by 15%-20% compared with
that using fully-mixed water tank [88]. Low water flow rate contributes
to high degree of thermal stratification. Therefore, the water flow rate
can be optimized considering the heating capacity and COP [44]. Water
TES can be integrated with other components for heat recovery. An early
study of a DX-SAASHP nested the evaporator/collector into a solar pond
(TES) [89]. It achieved a COP higher than 3.0 in winter and the
maximum COP of 8.4 in summer. A numerical simulation showed that
recovering heat from waste-water stored can enhance the SPF of a
SAASHP from 4% to 20% and recovering heat from drain water can
improve the SPF by 2% [90].
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4.2. Latent heat thermal energy storage

Latent thermal energy is embodied in phase change material (PCM)
at a constant temperature and is greatly larger than sensible thermal
energy. A study on a serial/dual-source IX-SAASHP suggests that latent
heat TES can increase the COP by 6.1% and 14% on sunny and cloudy
days [81]. Another study designs a multi-function system which uses
solar energy, latent TES and ground source [91]. In the latent TES mode,
this SAHP achieves an average COP of 4.86, almost twice of that in the
GSHP mode. When the latent heat TES is used as a heat source, a COP of
4.67 has been achieved.

PCMs are commonly stored in tanks and their storage efficiency is
hardly influenced by system configurations. For example, for both serial
IX-SAASHPs and hybrid system, the storage efficiencies of PCM-filled
tanks are equal at 63% [47,48]. Due to some characteristics of PCM,
such as the volume change during phase change process, tank selection
for latent heat TES differs from that for sensible heat TES. Using a
rectangular tank can decrease the melting time by 50% compared with
using a cylindrical tank with the same volume and heat transfer area
[92].

A novel triple-sleeve heat exchanger has been proposed as shown in
Fig. 23 [93]. Refrigerant flows in the inner tube and PCM is filled be-
tween the inner and the middle tubes. Heat transfer fluid absorbs ther-
mal energy in the solar collector and flows inside the outer tube. The
effect of temperature of the heat transfer fluid on TES is higher than that
of its flow rate. Ni et al. investigated a SAASHP with this triple-sleeve
heat exchanger [94]. Compared with an ASHP, at an ambient temper-
ature above 38 °C, cooling COP of the SAASHP using the novel heat
exchanger is 17% higher; at an ambient temperature below —10 °C,
heating COP of this system is enhanced by 65% [95].

Commonly used PCMs include paraffin, calcium chloride (CaCly),
sodium sulphate (NaSO4) and ice slurry. A novel serial/dual-source IX-
SAASHP with paraffin for latent heat TES shows improvement in COP,
especially on cloudy days [119]. A serial-hybrid SAASHP using CaCl, as
the TES medium reaches a seasonal COP of 4.5 with a storage efficiency
of 0.62 [96]. Generally, PCMs have poor thermal conductivity, which
leads to higher thermal resistance and lower heat transfer. It also in-
creases the time of charging and discharging processes, and thus impacts
the overall system efficiency. However, studies involving both sensible
and latent heat TESs suggest that the latent heat TES is superior to
sensible heat TES. A dual-tank serial IX-SAASHP using Na;SO4 shows a
COP of 10.03, about 3.5 times higher than that of a system only using
sensible heat TES [80]. The collection efficiency (the ratio of thermal
energy stored in water or PCM to the collected solar thermal energy)
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increases by 50% when the latent heat TES is used, while the influence of
the sensible heat TES is negligible. Another dual-tank serial IX-SAASHP
using ice slurry as the PCM reaches an SPF of 4.6, where solar energy
meets 78% of the heat demand [62].

Water/ice is the most available and eco-friendly PCM. Compared
with an electrical resistance heating system, a serial IX-SAASHP using
ice slurry as the PCM saves energy consumption by 86% [54,97].
However, a SAASHP using sensible heat TES can also save 81% of energy
consumption. A model of a reversible ice storage tank, which uses three
plate heat exchangers: two attached on the tank wall and one inserted in
ice, was proposed and validated for solar heating [98,99]. Based on the
model, the SPF of a SAASHP using ice storage is predicted to be around
5.0 [82]. For the ice storage buried in borehole, energy extraction can be
influenced by ground properties [100]. Under two extreme ground
conditions, energy injection of the two heat exchangers on the wall
fluctuates by 6%, and the energy injection of the heat exchanger in ice
significantly fluctuates by 20%.

It should be noticed that increasing collector area or latent heat TES
volume can improve system performance. Taking economic factors into
account, to achieve the same performance, increase in collector area is
more beneficial [46,62,82].

DX-SAHP | IX-SAHP

Flat-plate
collector

Evacuated
tube
collector

Collector/
Evaporator

Fig. 20. Matching relation between solar collectors and system configurations.
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Table 4
Utilisation of collector/evaporator and evacuated tube collector.
Authors Location Function Refrigerant Solar collector TES T, (°C) HC (kW) COP Comments Related
of HP type area (m?) type Vol. work
(m*)
Kuang et al., 2003 Qingdao, China SH, HW - coated, covered 11 water 2.1 -10-4 4.99 2.19 -
[67] 36°N
Huang et al.,2005 Taiwan, China HW R134a bare, collector/ 1.98 water 0.24 34.9 - 3.32 -
[35] 23°N evaporator sunny, 1.8
dark
Liang et al., 2011 - SH R22 evacuated tube 0 water - -1.2-9.5 10 3.3-4 -
[79] 10 3.3-4.3
20 3.3-4.6
30 3.35
Caglar and Yamali, - SH R407C evacuated tube - water 0.12 - 5.87 5.56 -
2012 [78]
Deng et al., 2013 Shanghai, China  HW, SH CO, evacuated tube with 30 water 0.5 —5-5 - 2.38 A trans-critical hybrid [55,58]
[57]1 31.17°N compound parabolic SAASHP
concentrator
He et al., 2014 [177] - HW R134a, R600a, covered, heat pipe - water - 10-30 - 3.69-5.27 -
R22
Chaturvedi et al., - HW R134a collector/ evaporator 3 - - - 0.366-0.603 1.7-5.61 -
2014 [153]
Heetal., 2015 [170] London, UK HW R134a covered, heat pipe 2.4 water 0.03, 25 2.253 4.93 -
51°N 0.2
Wang et al., 2015 - SC, SH, R407C evacuated tube - water 0.15 7,12, 20 2.56-4.24 3.75-4.72 - [172]
[171] HW (SH) (SH)
Shan et al., 2016 Beijing, China SH - evacuated tube - water 0.72, —13.3-4.5 3.9 2.5-3.0 -
[181] 40°N 0.8
Dong et al., 2017 Taiyuan, China SH R407C coated, collector/ 0.4 NaySO4 0.8 -15-7 0.186 2.94 -
[77] 38°N evaporator
Youssef et al., 2017 London, UK HW R134a evacuated tube 3.021 water 0.3 - 0.54-0.81 4.21-4.99 A serial/dual-source
[81] 51°N paraffin 30 kg IX-SAASHP
Buker and Riffat, - SH, HW R134a solar thermal roof 1.92 water 0.055 27 - 2.29
2017 [204]
Liu et al., 2017 - HW - evacuated tube - water - -5 42-55 1.8-2.7 Using a composite heat
[206] 7 53-65 2.6-3.2 exchanger
Youssef et al., 2017 London, UK HW - evacuated tube 3.021 water 0.3 - 9.632 4.7
[244] 51.5 °N PCM 30 kg
Li et al., 2018 [235] - SH R134a, evacuated tube 33 water - 20 20.9 4.2 An ejector enhanced
R1234yf, DX-SAASHP
R141b
Lee et al., 2018 Seoul Korea, 37 HW R1233zd(E), air-based flexible solar 35.2 water 0.6 2.08-10.92 0.83-3.29 1.12-3.99
[236] °N R134a collector
Kim et al., 2018 - HW R134a collector/evaporator 24 water - 21 7.21 3.4
[209]
Han et al., 2018 - SH, HW - evacuated tube 10 PCM 510kg  -23.4-20 0-45 0-8.3
[239] water 1
Huan et al., 2019 Xi’an, China 34 HW - evacuated tube 860 water 55 24-37 2.8x10°- 4.87 Serial IX-SAASHP
[205] °N 3.2x10°
860 - - 2.7x10° 10-20 Hybrid SAASHP
Aktas et al., 2019 - HW R410A double pass collector - Paraffin - - - 3.3-3.8
[223] RT42
Stritih et al., 2019 - SH R407C evacuated tube 25 paraffin - - - 4.3-5.7
[225] RT 31
water 3

(continued on next page)
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Table 4 (continued)

Yang et al.
o
£ =
=}
< 9
~ 2
2
=
1
g
g
3
O
a,
Q
o
B
&
&
©
=
P
O
S
<
I
.[6-\
=
S
S E
W i)
a
=
=N
—
N
g
E
I
Q)
£
©
-
3
it
|53
7}
=
S
o
R
2| &
@l 2
-
=
5}
I
[
2
&
[
~
=
k]
E A
£
=R
= o
=
2
Z
I+
9
3
-
n
4
=]
£
=
=
<

[197]

A DX-SAASHP using
microchannel

condenser

1.65-3.43

0.6-1.1

water 0.2 —3.4-10.7

2.09

microchannel solar

R134a
collector

HW

Qingdao, China

36 °N

Kong et al., 2020

[195]

1.26-4.61
1-4

0.5-1.4

—3-14.8
8-15

R290

[202]

0.35-0.55

water 0.04

1.11

PCM microchannel solar

regenerator

HW R134a

Guangzhou,

Xian et al., 2020

China, 23 °N

[201]
Kutlu et al., 2020

3.4-4.6

9-25

0.15

PCM

evacuated tube

R134a

HW

[203]
Ran et al., 2020

3.12-3.89

0.58-0.82

2

flat plate collector with

R410a
fan

SH

[207]
Vega and Cuevas,

SPF 3.8-4.7

10.2

water 0.3

22.5

evacuated tube
uncovered

SH

SPF 3.7-3.8
SPF 3.3-4

22.5
225
225
10

2020 [241]

2.7 10.2

2

water

evacuated tube
uncovered

HW

SPF 2.8-2.9
2.3-4.2

[247]

—18.2-29.88

0.8

water

evacuated tube

Xining, China
36.6 °N

Liu et al., 2020

[208]
Jiet al., 2020 [217]

Li et al., 2020 [222]

2.2-2.6
2.5-6.5

1.3-1.8
2.6-3.6

5-15

collector/evaporator

SH

0.2 -3.1-11.9

water

16

air-type PCM evacuated

tube

R134a

SH, HW

Sugian, China

34°N

[220,221]

1.9-2.4

0.189

water

26

1.

air-type solar collector

R134a

HW

Treichel and

Cruickshank, 2021

[219]
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4.3. Seasonal thermal energy storage

Solar TES includes daily and seasonal storages. The daily storage
stores solar thermal energy collected during daytime and releases it at
night. The seasonal TES stores the solar thermal energy collected in
summer for heating in winter and/or in winter for cooling in summer.
The seasonal TES is suitable to high latitude regions where seasonal
solar energy and heating demand are dramatically mismatched [101].
Seasonal TES allows solar energy to provide more than 50% of the
annual heating demand [102]. Compared with daily TES, seasonal TES
requires large storage volume and collector area, consequently high cost
[30].

Commonly used mediums for seasonal TES include water, gravel-
water, ground and aquifer. Different mediums require different start-
up time to pre-heat surrounding soil up to normal operating condi-
tions [102]. Tanks using water and gravel-water need to be buried
(partly) into the ground. The ground and aquifer are directly employed
as underground TES mediums. The buried water tank can be indepen-
dent to ground properties due to its good insulation [102]. This addi-
tional insulation cost can be partly compensated by lower excavation
cost. The results of a serial IX-SAASHP using an underground hemi-
spherical surface tank for seasonal TES suggest that a small burial depth
is capable of achieving desired annual COP and temperature of the
storage tank [68,69]. The aquifer and ground TESs have better economic
efficiencies than burial tanks [103]. Combining cost effective methods
with high thermal capacity methods may optimise the system perfor-
mance. For example, a system combining hot water and ground storages
achieves an SF of 74% and a system COP of 4.4 [104]. It is worth noting
that the change in ground temperature may bring disadvantages to
environment [30].

Water has higher specific heat capacity while solid mediums allow
higher temperature range for higher TES capacity [105]. In the cold
climate regions, since the heat loss increases with the increase in tem-
perature difference between storage mediums and surroundings, low-
temperature seasonal TES is suitable [106] and benefits for storage
stratification and thus storage efficiency [107]. Lower temperature of
the fluid entering solar collector also improves collector efficiency
[108]. PCM is a promising medium for low-temperature seasonal TES.
The size of the latent heat TES is much smaller than that of a sensible
heat TES. Numerical simulations were conducted to examine the annual
periodic performance of a dual-source IX-SAASHP using a seasonal
latent heat TES [109]. This system achieves an SPF of about 4.2.

5. Defrosting

Frosting is an issue influencing the reliable operation and efficiency
of ASHPs in winter, especially in humid regions. Frost build-up on the
surface of evaporator deteriorates heat transfer and efficiency and
eventually shutdown of ASHPs [110,111]. The mechanisms of frosting
and defrosting on the surface of evaporator are reviewed in
[112,113,114]. Song et al. [114] comprehensively reviewed the
defrosting methods including cycle reversing [115], hot gas bypass
[116], electric heater [117], dehumidification [118] and polymer
coatings [119]. The principle of the cycle reversing, hot gas bypass and
electric heater is to melt the frost layer. The periodic defrosting required
not only consumes electricity but also causes mismatching to the heating
demand. The cycle reversing requires a well-designed control strategy to
balance the SH demand and effective defrosting [115]. The dehumidi-
fication requires replacing or regenerating desiccant periodically as the
moisture absorption capacity drops [118]. The polymer coating enables
the reduction of the surface free energy and ice adherence force and
hence delays frosting [119], where the challenge is to sustain the per-
formance of the coating surface.

TES can assist the conventional defrosting methods [114,120]. As
shown in Fig. 24, a PCM storage is parallel to the condenser [121].
During the period of reverse-cycle defrosting, no thermal energy is
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Fig. 21. A novel flat plate collector [67].

provided for indoor SH. The stored heat assists to shorten the defrosting
period by 38% [122]. The PCM storage is placed around the compressor
to use the waste heat [123]. During the reverse-cycle defrosting, ASHP
continues to provide SH because the stored waste heat is delivered to
both indoor and outdoor heat exchangers. The defrosting time and total
energy consumption is 65% and 27.9%, respectively, lower than con-
ventional reverse-cycle defrosting. Over the whole test period, the COP
and total heating capacity increase by 1.4% and 14.2% with the power
input increasing 12.6%.

Fig. 25 shows an ASHP using a PCM-filled tank and an additional
evaporator coated with desiccant in series [124]. This system enables
continuous heat provision in both heating and regeneration modes. In
the heating mode, air is dehumidified as it flows through the desiccant-
coated evaporator (9) and then flows through the evaporator (12).
Refrigerant is condensed in a condenser embedded in water TES tank (4)
and then releases the residual thermal energy in the PCM TES tank (6).
Refrigerant absorbs the latent heat released during air dehumidifying
process in the desiccant-coated evaporator (9). This increases evapora-
tion temperature of the evaporator (12) to avoid frosting. In the
regeneration mode, refrigerant is condensed in a condenser embedded
in water TES tank (4) and releases the residual thermal energy for
desiccant regeneration as it flows in two evaporators (9 and 12). The
refrigerant vaporises as it flows through the PCM TES tank (6) and ab-
sorbs the stored thermal energy. Experimental results of this ASHP
shows a COP of 2.81, 7.3% and 46.3% higher than those of hot-gas
bypass defrosting and electric heater [124]. Heating performance of
ASHP is also superior to that of ASHP using reverse-cycle defrosting,
especially in the cold weather conditions [125].

For SAASHP, defrosting is only a concern for outdoor evaporators.
Solar thermal energy helps to reduce frost on solar collector [126]. Kong
et al. [127] numerically and experimentally studied a DX-SAASHP under
frosting conditions. The results showed that frosting on solar collector
can be significantly delayed. Experiments [128] show that the frosting
on a solar collector is much slower than that on an evaporator and after a
6-hour experiment, frost is merely seen on the solar collector. At a lower
solar irradiance of 100 W/m? and a higher relative humidity of 70%, no
frost is observed when the ambient temperature is higher than —3 °C.

6. Observations and outlook

Current studies on SAASHP focus on the match and optimisation of
system configuration. However, there is a lack on the optimisation of
each component and its matching application in SAASHP. This section
summarises recent research status in terms of system configuration,
solar collector, TES, working conditions, refrigerants and their in-
fluences on system performance. In addition to Table 4 summarizing the
details regarding the utilisation of collector/evaporator and evacuated
tube solar collector and Table 5 summarizing the details about the
studies of SAASHPs using latent heat and seasonal TESs, Tables 6 and 7
give the details of the typical studies of DX-SAASHP and IX-SAASHP and
Table 8 gives the details of some advanced SAASHP configurations. The
statistic summaries given in these tables provide an overall view of the
studies on this topic and sufficient information for further analysis
below.

Working fluid determines the selection of compressor and therefore
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the corresponding components. Fig. 26 summarises the number of open
literature per year for SAASHPs using different refrigerants. It can be
seen that, generally, the number of studies on SAASHPs shows an
apparent increase in the past 10 years. Currently, refrigerants such as
R22, R134a, R32, R410A and R407C are normally used in HPs due to
their good thermodynamic and thermophysical properties [20]. Due to
the composition shift and temperature glide, the currently used mixed
refrigerants have technical limitations [129]. The parameters that
determine the environmental impacts of refrigerants are the ozone
depletion potential (ODP) and global warming potential (GWP). These
parameters are high for the specified refrigerants. International envi-
ronmental protocols [130,131,132] have imposed restrictions on the use
of refrigerants according to ODP and GWP parameters. According to the
Kigali Agreement [131], natural refrigerants such as hydrocarbon re-
frigerants and carbon dioxide (R744) were found to be long-term sus-
tainable options for HPs [20]. For example, the performances of R1270
and R290 are closer to that of R22 but their flammability requires more
safety considerations while retrofitting [83]. Current studies on
environment-friendly refrigerants with low GWP, such as R32 and R290,
are insufficient and need to be further investigated. R32 is a more
environment-friendly alternative refrigerant to R410A in HPs and it is
most commonly used in Japan for supplying HW. However, due to
flammability (A2L) issues some countries are researching other retrofits,
such as R454B. R290 is the most popular refrigerant for HPs in Europe
not only for HW but also for SH applications. Recent increase in
refrigerant inventory limit (IEC 60335-2-89 [133]) enables greener re-
frigerants such as R32 and R290 in these applications.

The geographic location affects solar availability and thus the
research interests on SAASHP. Fig. 27 shows the number of in-
vestigations on SAASHPs in different countries. It can be noticed that the
majority of studies have been located in China (48%), Turkey (10%), the
US and Canada (5%). The studies in the UK is only 3%. SAASHPs for the
domestic sector are mainly investigated by researchers from mid-
latitude (20° — 50°) countries where SH is required in winter and HW
is required throughout the year under the medium solar energy avail-
ability and temperate climate conditions (-15 °C — 30 °C). SAASHPs for
high-latitude areas need to be further investigated.

Generally, the higher solar irradiance leads to the higher COP of
SAASHP [33,71,73,77,134,135,136,192]. For example, a numerical
simulation of DX-SAASHP for HW has tested the effects of various pa-
rameters (see Figs. 28 and 29) [73]. As solar irradiance increases from
300 to 1000 W/m?, COP increases from 4.2 to 6. In this process, solar
collector efficiency decreases from 1.5 to 0.85. It should be noticed that
an uncovered collector is used in the study which absorbs thermal en-
ergy from both solar irradiation and ambient air. At lower solar irradi-
ance, the collector mainly absorbs thermal energy from ambient air and
achieves an efficiency over 1; at higher solar irradiance, the collector
mainly absorbs thermal energy from solar energy and the efficiency is
lower than 1 because of heat loss. For a covered collector, the trend is the
same but less apparent [108].

In terms of ambient temperature, as Fig. 29 shows, high ambient
temperature leads to higher COP and collector efficiency [73]. With the
increase of ambient temperature from 5 °C to 35 °C, COP increases from
4.5 to 5.7, and collector efficiency increases from 0.75 to 1.07 since as
ambient temperature increases, collector can earn more thermal energy
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Table 5

Studies of SAASHPs using latent heat and seasonal TESs.

Authors Location Function Refrigerant Solar collector TES T, (°C) Teon HC (kW) CcOoP SPF Comments Related work
of HP °0
type area type volume
(m?) )
Esen, 2000 Trabzon, SH - flat plate 30 CaCl, 1090 kg 4.5-16.4 - - - -
[101] Turkey 41°N
Kaygusuz, 2000 Trabzon, SH R22 coated, flat 30 CaCl, 1500 kg -3-16 40-55 0.04 4 for serial, A serial-hybrid [31,48,64,66,96,224]
[47] Turkey 41°N plate 3 for hybrid SAASHP
systems
Yumrutas et al., Isparta, Turkey SH - coated, 30 water (and 300 -9 - 10 4-8 Seasonal TES [68]
2003 [69] 37.8°N covered, flat soil)
plate
Reuss et al., Attenkirchen, SH, HW - flat plate 764 water 500 - - - 3.2-4.4 Seasonal TES
2006 [104] Germany 51°N soil 6800
water
equal
Qi et al., 2008 Beijing, China SH - flat plate 30, 40, CaCl, 228, 456 —14.8 - 3.025 4.2 A serial/dual-
[109] 40 °N 50, 60 source IX-
SAASHP with
seasonal latent
TES
Trinkl et al., Wuerzburg, HW, SH - covered, flat 30 water/ ice 12,5 5 - 0.59 for SH - 4.6 -
2009 [62] Germany 50°N plate water 0.3-1 and 0.23 for
34.38 water/ ice 11 HW - 4.7
water 0.5
24.83 water/ ice 15 - 4.3
water 0.5
Winteler et al., Wuerzburg, HW, SH - bare 10 water/ice 10 - - 1.09 - 4.25 -
2014 [173] Germany 50°N 13 1.74 - 4.47
20 2.26 - 4.12
30 20 3.59 - 3.73
Strasbourg, 10 10 0.6 - 3.73
France 48°N 10 1.11 - 4.23
20 2.31 - 4.02
Cabonell et a. Strasbourg, SH, HW - bare and 10-30 waste water 0.13 - - 0.005 /m? - 2-7 -
2014 [90] France 48°N covered, water/ice 10-30
coated 20-40 ‘waste water 0.13 0.0114 /m? - 2-4.5
water/ice 20-50
Carbonell et al., Strasbourg, SH, HW - covered 15 ice 25 - - 0.973 - 5.01 - [981,[99,100]
2014 [82] France 48°N (including 5 20 20 - 5.53
m? uncovered 30 20 - 5.90
collector) 40 1.147 - 4.78
45 30 - 5.1
Lietal, 2014 Beijing, China SH, HW - flat plate 150 water 105 -6.5 - - 6.2 Seasonal TES
[175] 40 °N
Qv et al, 2015 Shanghai, SC R22 - - RT5HC 10.5 kg 30-43 - 7.242 2.3-3 - Using a novel [93,94,187]
[95] China 31.17°N SH -17 3.58 2.8 - triple-sleeve
energy storage
exchanger
Tamasauskas Montreal, SC, SH, R507a covered, flat 11.9, 4% (by mass) 5 - - 0.935 - 2.53 - [174]
et al., 2015 Canada 45°N HW plate 26.8 propylene
[97] Toronto, glycol/ water - - 0.863 - 2.55
Canada 43.5°N
Vancouver, - - 0.767 - 2.43

Canada 49°N

(continued on next page)
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Table 5 (continued)

Authors Location Function Refrigerant  Solar collector TES T, (°C) Teon HC (kW) cop SPF Comments
of HP °0)
type area type volume
(m? (m?
Lerch et al., Graz, Austria SH, HW - - - water 0.3 -12 - 5.36 - 2.55 ASHP
2015 [46] 47°N covered, 14 water 1 - 3.65 Hybrid SAASHP
coated, flat
plate
bare, coated 30 water 1 - 3.53 Serial IX-
bare, coated 30 water 1 - 3.56 SAASHP systems
water/ice 0.6
covered, 14 water 1 - 3.68 A hybrid
coated SAASHP using
air preheated by
solar as heat
source
covered, 14 water 1 - 3.7 A dual-source
coated IX-SAASHP
Qu et al., 2015 Beijing, China SH - vacuum tube 16.2 water 0.85 - - - 10.03 -
[80] 40°N NaySO4 0.8
Youssef et al., London, UK HW R134a evacuated tube 3.021 water 0.3 - - 0.54-0.81 4.21-4.99 A serial/dual-
2017 [81] 51°N paraffin 30 kg source IX-
SAASHP
Youssef et al., London, UK HW - evacuated tube 3.021 water 0.3 - - 9.632 4.7
2017 [244] 51.5 °N
PCM 30 kg
Hanetal., 2018 - SH, HW - evacuated tube 10 PCM 510 kg -23.4 - - 0-45 0-8.3
[239] water 1 20
Aktas et al., - HW R410A double pass - paraffin RT42 - - 60 - 3.3-3.8
2019 [223] collector
Stritih et al., - SH R407C evacuated tube 25 paraffin RT - - - - 4.3-5.7
2019, [225] 31
water 3
Kutlu et al., - HW R134a evacuated tube 4 PCM 0.15 9-25 - - 3.4-4.6
2020 [203]
Lu et al., 2020 - SH - - 40 water 40 -5-37 - - 3.95 - Seasonal TES
[249] 2 3.5 — Normal TES
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Table 6
Research on DX-SAASHP using flat plate collectors and water tank.
Authors Location Function of Refrigerant Solar collector Volume of T, (°C) Teon (°C) HC(kW) CcOoP Related work
HP TES (m®)
type area
(m?
Chaturvedi and Shen, - HW R12 bare 3.39 - —4-22 40-50 - 2-3
1984 [33]
Chaturvedi et al., 1998 Virginia, US HW R12 bare 3.48 - 10-27 40 1-1.5 2.5-4.0 [152,159]
[134] 37.8°N
Axaopoulos et al., 1998 Athens, Greece HW R12 bare 2 0.158 5-40 0.14/m? 3.42
[140] 38°N
Ito et al., 1999 [76] Kanagawa, HW R12 bare 3.24 - 8 - - 5.3
Japan 36°N
Huang and Chyng, 1999 - HW R134a bare 1.57 0.12 31.3 45.6 - 3.83
[148]
Huang and Chyng, 2001 ~ Taiwan, China HW R134a bare 1.44 0.105 27-37 45-68 0.678-0.926 2.5-3.7 [141]
[137] 23°N
Hawlader et al., 2001 - HW R134a bare 3 0.25 26-36 - - 49
[192]
Torres-Reyes and Mexico 23°N SH R22 - 4.5 - 20-32 2.8-5.37 2.56-3.46 [163,164]
Cervantes, 2001
[162]
Chyng et al., 2003 [65] Taiwan, China HW R134a bare, coated 1.86 0.105 - - 1.7-2.5
23°N
Kuang et al., 2003 [70] Shanghai, China HW R22 bare 2 0.15 3-12 - - 4-6
31.17°N
Ito et al., 2005 [146] - - R22 - 1.91 - - 4.5-6.5
Chata et al., 2005 [151] - - R12, R22, R134a, bare 15.6 - 5 60 3.8
R404A, R407C, R410A covered 17.2
Kuang and Wang, 2006 Shanghai, China SC, SH, HW  R22 bare 10.5 0.2,1 7.9-12.1 5.8-7.6 2.1-2.7 (SH)
[37] 31.17°N
Xu et al., 2006 [71] Nanjing, China HW R22 bare 2.2 0.15 5 - - 2.51-4.69
32°N
Anderson and Morrison,  Sydney, HW R22 bare 4 0.27 25 - 5-7
2007 [138] Australia 34°S 20 3-5
Huang and Lee, 2007 - HW R134a coated - 0.115 - - 2.12-2.72
[142] 0.24 2.24-3.57
0.13 1.85-2.53
none 0.2 2.48-2.78
Kara et al., 2008 [5] Izmir, Turkey SH R22 bare 4 - 2 55 1.75 -
38°N
Mohanraj et al., 2008 Calicut, India SH R22 covered, 2 - 29-33.3 60 - 1.98-2.57 [145,147]
[139] 11°N coated
Chow et al. 2010 [32] Hong Kong, HW R134a bare 12 2.5 30-32.8 58.1-63.5 4.82-6.3 6.57-10.7
China 22°N 13-15.8 51.65-55.85 3.52-5.33 4.31-9.14
Kong et al. 2011 [73] Shanghai, China HW or SH R22 bare 4.2 0.15 20.6-28.9 0.208-0.27 5.21-6.61 [72,74,87]
31.17°N
Fernandez-Seara et al., - HW R134a bare - 0.3 7-22 21.2-57.9 - 3.23
2012 [150]
Moreno-Rodriguez Madrid, Spain HW R134a - 5.6 0.3 11-19 57 0.275-0.3125 1.7-2.9
etal., 2012 [143] 40°N
Moreno-Rodriguez Madrid, Spain SH R134a - 5.6 - 0-20 32-40 2.375-2.917 1.9-2.7
etal., 2013 [144] 40°N
Molinaroli et al., 2014 - SH R407C bare 40.32 - -5,0,5, 10, 50 7.5 2.2-4.3
[136] 29.12 15
22.40

(continued on next page)
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Table 6 (continued)

Authors Location Function of Refrigerant Solar collector Volume of T, (°C) Teon (°C) HC(kW) COP Related work
HP TES (m®)
type area
(m?)
16.80
Sun et al. 2014 [149] Shanghai, China HW R134a coated 1.92 0.15 26 - - 45-8.5 [60]
31.17°N

Scarpa and Tagliafico, - HW R134a, R600a bare 1 0.025 5.3, 16.5, 45 0.216, 0.295, 0.392 5.8 [155,156,158]

2016 [61] 33.2
Deng and Yu, 2016, - HW R134a - 2 0.15 - 55.1-57.6 - 4.46-4.74

[34]
Paradeshi et al., 2016 Calicut, India SH R22 - 2 - - - 2.0-3.6 1.8-2.8

[135] 11.15°N
Kong et al., 2017 [157] - HW R410A bare 4.2 0.15 25.7 - 3.14-4.27 3.62-8.6 [154]
Mohamed et al., 2017 - SH, HW R407C bare 4.22 0.2 6.5-8.5 86 3.3-4.2 2.7-3.9

[126]
Paradeshi et al., 2018 Calicut, India SH R22, R433A covered 2 - - - 1.9-3.5 -

[234] 11.15°N
Cai et al., 2019 [29] - HW - bare 4.2 0.15 5-15 31-50 1.5-2.5 2.5-3.5
Huang et al., 2019 - SH - bare, coated 4 - —5-5 - 0.75-1.1 1.5-2

[213]
Duarte et al., 2019 Pampulha, Brazil HW R134a, R290, R600a, coated 1.65 0.2 25-33 - - 2.25-2.91

[230] R744, R1234yf
Rabelo et al., 2019 - HW R134a, R290 uncovered 1.65 0.2 25 60, 65, 70 1.37 2.5

[242]
Cao et al., 2020 [237] - HwW R134a covered 4.2 0.15 25.7 - - 4-6
Cai et al., 2020 [215] - SH - bare, coated 4 - 2-15 - 2.4-2.7 parallel; 4.5-4.58

2.35-2.6 serial parallel;4.33-4.5 serial
Liu et al., 2020 [243] Qinghai, China SH R22 - 6 1.8 -3.1 45 - 2-4
36 °N

Zhang et al., 2020 Hefei, China 32 SH, SC - bare, coated - 0.3 5.9-14 - - 2.87-3.8

[216]

°N
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Table 7
Research on IX-SAASHP and hybrid SAASHP using flat plate collector and water tank.
Authors Location Function Refrigerant Solar collector Volume of T, (°C) HC (kW) copP SPF Related
of HP ———  TES(m® work
type area
(m?)
Freeman et al., Madison, US SH, HW - - 10, 20, 0.075 per — 1.95 (SH), 2 (hybrid) 2.5 -
1979 [63] 43°N 30, 40, m?2 solar 0.68 (HW) (dual-source)
Albuquerque, 50, 60 collector 0.94 (SH), 2.8 (serial)
US 35°N 0.68 (HW)
Charleston, US 0.485
38°N (SH), 0.68
(HW)
Yumrutas and Gaziantep, SH R22 covered 7.4 0.65 7.8-16.1 - 2.5-3.5 -
Kaska, 2004 Turkey 37.18°N
[42]
Dikici and Elazig, Turkey SH R22 - 11.1 0.18 3.9 3.844 3.08 - [49]
Akbulut, 38.41°N
2008 [75]
Li and Yang, - HW R22 - 6 0.4 15-30 11 4 (DX- -
2009 [161] SAASHP), 4
(serial),3
(hybrid)
Chaichana Chiang Mali, HW R22:R124: bare 4,8, 0.3, 0.6, 13.7-36.2 - 4.1-4.6 - [168]
et al., 2010 Thailand R152a (20%: 12, 16, 0.9,1.2
[166] 18.8°N 57%: 23%) 20
Li and Yang, Hong Kong, HW R22 covered 390 32 15 - 3.5 -
2010 [43] China 22°N 25 3.86
Bakirci and Erzurum, SH R134a coated, 1.64 2 —10.86 3.801 2.86 -
Yuksel, Turkey 41°N covered
2011 [41]
Sterling and Ottawa, Canada HW - - 4 0.5 - 0.634 2.5-5 - [53]
Collins, 45°N
2012 [54]
Tagliafico - HW - bare 1.78 - 0-15 150 - -
et al., 2012
[178]
Chow et al., Hong Kong, SH, HW R22 - 1400 - 10-23 - 4.48-4.56 -
2012 [165] China 22°N
Panaras et al., Athens, Greece HW - coated 2.58 0.28 18.5 0.643 2.12 - [180]
2014 [183] 23.5°N
Banister and - HW - - 25,5, 0.3, 0.45 - - 2.3-6.3 -
Collins, 7.5,10
2015 [169]
Fraga et al., Geneva, SH, HW - bare 116 6 + 0.3*8 —2.4-20.5 2.13 (SH), - 2.9 [229]
2015 [167] Switzerland 5.28 (HW)
46°N
Jietal., 2015 Lab based HW, SH, - - 3.2 0.2 7 1.2-2.4 1.75-3 (HW) -
[186] SC (HW) 2.35-2.75
1.4-2.2 (SH)
(SH)
Caietal., 2016 Lab based SH, SC, - - 3.2 0.3 7 1.9-2.4 2-3.25 (HW) - [214]
[44] HW (HW) 2.25-2.5 (SH)
1.3-1.5
(SH)
Poppi et al., Zurich, SH, HW R410A - 9.28 0.763 -10 0.347 - 3.16 [184]
2016 [185] Switzerland, (HW),
47°N 0.944 (SH)
0.347 - 2.43
(HW),
1.966 (SH)
Carcassonne, -5 0.307 - 3.85
France 43°N (HW),
0.419 (SH)
0.307 - 2.93
(HW),
1.047 (SH)
Liuetal, 2016  Zhengzhou, HW, SH - - - - —-15, —10, 1.2-2.9 2-3.1 -
[50] China 34°N -7,-5,2,7
Li and Kao, Taipei, China HW R410A - 3.84 0.46 - - - 3.92
2017 [182] 25°N 0.92 - 4.36
Kaohsiung, 0.46 - 4.31
China 22.5°N 0.92 - 4.83
Bellos and - SH - - 5-80 1 -1.4-14 5-15 4 -
Tzivanidis,
2017 [176]
Li and Kao, — HW - - 5 4-30 - - -
2018 [240]

(continued on next page)
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Table 7 (continued)
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Authors Location Function
of HP

Refrigerant

Solar collector

type

area
(m?)

Volume of T, (°C) HC (kW) copP SPF Related
TES (m®) work

Ran et al., Lhasa, China SH, HW
2020 [231]
Chengdu, China
Beijing, China
Shenyang China
Liuetal.,, 2020 Chongqing, HW
[238] China 29 °N
Wang et al., Changsha, HW
2020 [233] China 28.5 °N
Long et al., - HW
2021 [211]

R410a

R134a

covered

300

5.5

150

12

0.4 +0.2,

0.5 + 0.25,

0.6 + 0.3

10 - 120 - 6.92

90 - 3.61
180 - 3.27
270 - 2.45
0.25 5-40 - 2-5.2 -
10 20-30 - 1.5-3.5 -

0.3 26-32 3-11 1.5-5.5 -
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Fig. 22. Solar-geothermal hybrid source HP (reproduced from [84]).

from air and thus increase efficiency.

The required output temperature has a negative linear influence on
COP. As Fig. 30 shows, a study of a DX-SAASHP for HW concluded that
the higher the output water temperature was, the lower system COP
would be [35,65,70,137]. As the output water temperature increases
from 25 °C to 60 °C, the COP drops from 3.7 to 2.7 linearly. An exper-
iment of a DX-SAASHP for HW shows that, with a rise of temperature
difference between output water and ambient environment from 5 °C to
40 °C, COP drops from 5 to 2 (see Fig. 31) [138]. This is, as output water
temperature increases, compressor discharge pressure increases, and
therefore energy consumption increases [44]. In turn, as inlet source
temperature decreases, compressor suction pressure decreases. The in-
crease in pressure ratio brings lower COP.

Fig. 32 summarises the effect of ambient temperature on COP of the
SAASHPs for different end use in published papers. The advanced sys-
tems refer to the SAASHPs involving innovations in the aspects of solar
collector, TES and system configuration. In this figure, the COP values
are taken the average values and the ambient temperatures are taken the
lowest values of the working conditions. The ambient temperature
ranges from —15 °C to 30 °C and COP ranges from 2 to 8.5. Majority of
the COPs obtained ranges from 2 to 6. Especially, an IX-SAASHP for SH
using seasonal latent heat TES earned a COP of ca. 4.2 at —15 °C [109].
Similarly, another IX-SAASHP with seasonal TES for SH achieved higher
COP of ca. 8.5 with a collector area of 40 m? and a storage volume of
1960 m® [68]. Interestingly, the COP values of two DX-SAASHPs shown
in [32] and [139] vary significantly. This concerns many reasons. The
DX-SAASHP in [32] uses R134a as the working fluid and uses an

Heat transfer fluid
PCM A
Refrigerant

Oullet HTF, A,
é_l
i o $
Inlet refrigeran ! |
A s
1
I

A

-—

-
[ Outlet refrigerant

Inlet HTF

Fig. 23. Triple-sleeve heat exchanger [93].
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uncovered collector of 12 mz; the DX-SAASHP in [139] uses R22 as the
working fluid and uses a covered collector of 2 m2. Overall, advanced IX-
SAASHP is ideal for SH as well as HW, and DX-SAASHP is more suitable
to HW. For multi-functional SAASHP, advanced IX-SAASHP is the best
choice.

Fig. 33 summarises the number of open literature having different
COP where COP values take the average of values given in the studies. It
can be observed that the COP values of most of these SAASHPs are
located in the range from 2.0 to 6.0. The dual-source IX-SAASHP ach-
ieves COP lower than 3.5. The hybrid SAASHP, serial IX-SAASHP,
advanced DX-SAASHP and dual-source DX-SAASHP can achieve COP
less than 6. Both the DX-SAASHP and advanced IX-SAASHP can achieve
COP higher than 6, promisingly up to 10.5. Considering economic
aspect, DX-SAASHP and hybrid SAASHP shares similar payback period
for around 4.5 years, while the payback period of serial IX-SAASHP is
around 7 years [161].

It can be concluded from the above that solar collector and thermal
energy storage have significant influence on the system performance.

25

The influences are displayed in Fig. 34, where the solid line represents
the SPF and the dashed line represents the yearly electricity consump-
tion, that larger collector area and storage volume lead to a higher SPF
and lower electricity consumption [76,96,135,192]. According to Ito
etal.’s [76] and Carbonell et al.’s [90] simulations, uncovered collectors
are superior to covered collectors with a collector area lower than 15 m?.
For larger collector area, covered collector with proper storage volume
can help to achieve an SPF over 6. Small-scale SAASHPs for the domestic
sector require high-efficient solar collectors to reduce collector area at
the same SF and working conditions. This may be achieved by auxiliary
components, such as compound parabolic concentrator [55,57,58,108].
Xu et al.’s [108] simulation revealed that a collector using compound
parabolic concentrator and capillary tube absorber can achieve higher
collecting temperature and higher collector efficiency than that of a flat
plate collector at the same size. According to Ito et al. [76], collector
plate thickness and tube pitch can affect system SPF according to plate
material and ambient temperature. Larger plate thickness and lower
tube pitch result in higher SPF. Simulation of an uncovered collector
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Table 8
Advanced SAASHP systems.
Authors Function of  Refrigerant Solar collector Volume of T, (°C) Teon HC CcoP Comments
HP TES (m®) °C) (kW)
type area
(m?)
Chaturvedi et al., 2009 [36] - R134a covered 10.58 - 5 60 - - A two-stage DX-SAASHP for high
8.77 90 temperature applications
Li et al.,, 2013 [179] HW - - 11.4 3 —10-34 - - 1.4-4.4 A wind-powered hybrid SAASHP
SH —10-18 3.6-6.7 A wind-powered serial IX-SAASHP
SC 26-34 1.2-23
Lv et al., 2015 [52] HW R32/R290 (20%/80% by mass) - - - - 55 - 3.84 A solar assisted auto-cascade HP
Faria et al., 2016 [56] HW CO, - 1.57 - 30 - - - A trans-critical DX-SAASHP
Yan et al., 2016 [39] HW R134a, R1234yf - 2 - 25 55 2.43 4.07 A vapour ejector enhanced DX-
SAASHP
Chen and Yu, 2017 [40] HW R134a - 5 - - 40-75 - 4.61-5.61 A vapour ejector enhanced DX-
SAASHP
Chargui and Awani, 2017 [212] SH CO, bare 8 2 10-20 - 2.5-6 3.4-5.5
Chen and Yu, 2018 [227] HW — - 5 - — 40-70 6-6.5 3.5-6.5 An ejector enhanced DX-SAHP
Qiu et al., 2018 [210] HW - - 20 - —25-10 50 10-14 2-2.9 A cascade serial IX-SAASHP and
two two-stage dual-source DX-
SAASHP
Rabelo et al., 2018 [218,232,246] HW CO, bare, 1.57 0.2 25 - 1.4-1.9 3-5.5 A trans-critical DX-SAASHP
coated
Chen et al., 2019 [228] HW R134a - - 0.1 - - 1.9-2.7 2.3-5.8 An ejector enhanced DX-SAASHP
using micro-channel condenser
Fan et al., 2019 [226] HW R290/R600a - - - —20-20 - - 2.5-7.5 An ejector enhanced DX-SAHP
Yerdash et al., 2020 [51] HW, SH R134a/R410a, R32/R290, R32/R1234yf, R32/R134a, - 6 0.3 —-30-10 40-60 - 1.8-3 A solar assisted cascade HP
R410A/R290, R410/R1234yf, R744/R290, R744/
R1234yf, R744/R134a
Kong et al., 2020 HW R134a bare 2.1 0.2 -3-7 20-45 - 2.72-4.16  Using micro-channel condenser
[127,193,194,196,198,199]
Ma et al., 2020 [245] SH CO,, R410a - 70 3 —-6.6-12.7 35 - - A two-stage serial IX-SAASHP
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suggested that the influence of plate thickness is apparent at smaller
thickness and tends to be less at larger thickness. Other parameters such
as inclination angle of solar collectors hardly affect SPF and collector
efficiency [41,108].

Current studies on solar collectors mainly adopt the collectors
designed for solar domestic HW. The specific collectors for SAASHP are
needed to be developed, which should match the development of TES
methods and the requirements of the SAASHP. Currently, for most sys-
tems using sensible heat TES, solar collector is expected to achieve
higher outlet temperature to store more thermal energy in the same
storage volume. In the future, as PCM is adopted to improve TES effi-
ciency and combined with defrosting for the smooth operation of sys-
tems with evaporator, e.g., hybrid SAASHP, the required collector outlet
temperature can be lower, just above the phase change temperature. A
novel control strategy proposed by Xu et al. can be used to control the
fluid flow rate and outlet temperature of solar collectors based on

50
Advanced IX and hybrid
45 I Dual-source IX-SAHP
[ Hybrid SAHP
40 B Serial IX-SAHP
771 Advanced DX-SAHP
35 = Dual-source DX-SAHP
DX-SAHP
30 .

Number

Fig. 33. Number of journal papers vs COP.
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working conditions, enabling optimization of SAASHPs [188].

Increasing investigations of SAASHPs are seen in the most recent
years. Great efforts have been put to develop high efficient and compact
components to match the working conditions of SAASHPs and hence to
improve the system performance. Particularly, eco-friendly refrigerants
such as R1234yf, R1233zd(E), R433A, R32 and R290 are used to deal
with the global warming.

7. Potential and barriers

The world is actively decarbonizing the energy sector through the
development, first, of the renewable electricity and the abandonment of
hydrocarbon combustion based systems. HPs are of the greatest interest.
Combining and hybridizing solar thermal collectors with HPs can
significantly increase the performance of the system. The COP of HPs has
increased substantially over the past years due to technical improve-
ments. The integration of solar thermal energy will boost the COP even
higher. According to IEA recent report on Solar Heating and Cooling
Programme, in 2019 solar thermal systems provided 479 GW thermal
energy. This is equivalent to save 43 million tons of oil and to avoid 138
million tons of CO5 emissions [189].

In Europe and the UK are trying to standardize and commercialize
SAHPs. For example, companies, such as Solamics Bunsen Air, mainly
focused on DX-SAHP water heaters. As an evaporator in such DX-SAHP,
so-called thermodynamic panel or roll-bond evaporator is used. This is
simply an unglazed absorber plate of solar thermal collectors, which is
shown in Fig. 20 as a collector/evaporator. The main shortcoming of
such evaporators is a huge heat loss due to non-glazing and isolation, but
this is also an advantage, since in the absence of solar radiation, natural
convective heat exchange with ambient air allows the evaporation
process. With a high solar radiation intensity in the collector/evapo-
rator, the refrigerant turns into a gaseous phase with large volumetric
and superheating conditions, which may cause overheating of com-
pressors with further mechanical failure. Therefore, finding efficient DX
dual-source [38] configurations with forced convection type fan-coil
evaporator assistance is of interest for further research. At the same
time, there is a need for adaptation to specific climate conditions, taking
into account the meteorological and consumer demand boundary con-
ditions. This, in turn, leads to an optimal selection of other components,
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such as a compressor, expansion valve and condenser.

In IX systems comprehensively discussed in section 2.2 solar thermal
collectors are connected with vapor compression heat pump cycle
through the water storage tank or intermediate heat exchanger. In this
case, a heat pump of the “Water-Water” type is used, the evaporator and
condenser of which is a brazed plate heat exchanger. In this case, the
heat transfer fluid flows in solar collectors without phase changing. In
this configuration, the processes in solar thermal part are more
controllable and predictable. The use of solar collectors and air source
evaporators in the SAASHP system can be dual-source IX-SAASHP or
hybrid SAASHP. In the configurations presented in section 2.2 and 2.3,
the fan-coil evaporator is mainly used in the refrigerant circuit. Few
studies are presented for an air source evaporator in a hydraulic circuit,
where heat exchange occurs without phase changing. The search for the
most optimal configuration for IX-SAASHP taking into account auto-
mated components and bringing it to the level of commercialization is
the interest of the authors of the present review, in particular for UK
case.

Automation implies the use of electronic components instead of
mechanical ones with an appropriate control algorithm and the use of
sensors. An intelligent control algorithm for an automated system will
allow systems to work with the highest efficiency, of course, after
determining the efficient configuration of the DX-SAASHP and IX-
SAASHP based on thermodynamic calculations and experiments. In
this regard, varible frequency drive (VFD) compressors and electronic
expansion valves are of interest, which separate the high and low-
pressure sides of the vapor compression cycle. In heating, ventilation
and air-conditioning systems, the VFD can be used in fans, pumps and
compressors with variable loads. VFD compressors are of particular in-
terest for DX types of the vapor compression cycle both solar and
ambient air since intermittent nature of solar irradiation and variability
of ambient air temperature. Due to the variability of the weather
boundary conditions, the volumetric flow rate of the vaporous refrig-
erant through the DX evaporator will be different and, accordingly, the
VFD will control the volumetric efficiency of the compressor. By
adjusting the frequency of the electrical power supplied to the
compressor motor, the VFD controls the rotational speed of the alter-
nating current motor. The energy savings for compressors up to 35% in
heating, ventilation and air-conditioning systems [190]. In low solar
irradiation or ambient air temperature, which affects evaporation tem-
perature the heating capacity of a heat pump decreases. Similarly, heat
pumps with VFD compressors allows adjusting the heating capacity in
the different ranges with appropriate frequency. Obviously, the highest
COP will be obtained for the lowest frequency. The COP value decreased
proportionally to the increase in condensing temperature.
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The issues of finding the optimal configuration and studying the
optimal operation of DX-SAASHP and IX-SAASHP, taking into account
the use of high-tech components such as VFD compressors/pumps/fans,
electronic expansion valve, compact brazed heat exchangers are still
open for specific climate conditions. At the same time, for significantly
low outside temperatures, research is also needed on the application and
optimal use of the auxiliary heater. This will entail research in the field
of control and monitoring, the development of an optimal algorithm and
system controller. There is a lot of research potential in this regard, but
there are some barriers associated with mass commercialization.

Insufficient recognition of the benefits and high investment costs are
the main barriers to widespread use of HPs. Also, in some countries with
comparatively low energy prices (natural gas, electricity, etc.), in
particular, resource-rich countries, HP operating costs are also inferior
to conventional heat supply. In these countries, it is necessary to revise
the tariff policy taking into account international environmental pro-
tection standards. Defining international standards for HP efficiency,
optimization of system and components performance, local production
and assembling of the entire system and individual details may be of
interest to many representatives of small and medium-size enterprises,
start-ups, service engineers, manufacturers and suppliers of heating,
ventilation and air conditioning equipment. There is a much progress in
conventional ASHPs and GSHPs, meanwhile for SAHP systems,
including DX-SAASHP and IX-SAASHP, these actions are at the initial
level.

In terms of environmental protection, in regions with a predominant
demand for heat supply, during the heating season in large cities and
towns there is a poor air quality due to emissions from energy facilities.
This leads to a sharp increase in respiratory and allergic diseases. The
transition to clean heat provision technologies is the policy of the
administration of many cities and towns. In this regard, the technology
of heat provision of residential and commercial buildings, individual
households using solar thermal energy and ASHP may be of interest to
eco researchers, local executive bodies, cities administration, energy
policy and decision makers, environmental activists and communities.
Therefore, energy policy and decision makers should propose incentive
mechanisms in the form of subsidies, grants, etc. to accelerate the
transition to clean heat supply technologies like the SAASHP.

New constructions of the building sector are responsible for the most
of HP purchases. In the US, for example, the share of HP sales for new
buildings is about 50% for new multi-family buildings and is higher than
40% for single-family dwellings [1]. The European Union, Japan and
China markets are expanding quickly. The HP market size is huge even
for new buildings. However, to boost adoption in existing buildings
across the globe, it is necessary to work to remove the abovementioned
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technological and economic barriers. In summary, SAASHP has
demonstrated advantages and perspective for domestic space heating
and hot water. To increase the uptake of SAASHPs, innovative design
and optimization of components and system are needed to improve the
performance of the system, to reduce the costs and to ensure its
robustness of operation.

8. Conclusions

The integration of solar thermal energy and an ASHP based on
vapour compression cycle is the subject of study by many researchers
and a review of the recent research and developments has been pre-
sented in this article. Five typical and five advanced type solar SAASHPs
have been analyzed. Three solar thermal collector types and three
thermal energy storage methods have been discussed. Ten defrosting
methods have been briefly discussed.

The investigations so far have demonstrated that the SAASHP is a
promising technology for HW and SH in the domestic sector. SAASHPs in
the domestic sector are mainly investigated by researchers from mid-
latitude (20° — 50°) countries where SH is required in winter and HW
throughout the year under the medium solar irradiance and temperate
climate conditions (-15 °C — 30 °C). In the future, multi-functional
SAASHPs as well as SAASHPs for high-latitude areas need to be
further investigated by developing advanced IX-SAASHP with enhanced
solar collector and TES method.

The COP values of most SAASHPs are ranging from 2 to 6. The dual-
source IX-SAASHP achieves COP lower than 3.5. The hybrid SAASHP,
serial IX-SAASHP, advanced DX-SAASHP and dual-source DX-SAASHP
can achieve COP up to 6. Both the DX-SAASHP and advanced IX-
SAASHP demonstrate their promising potential, enabling COP higher
than 6 and up to 10. Advanced IX-SAASHP is ideal for SH and HW, and
DX-SAASHP is better suitable to HW. Current studies on SAASHP focus
on the matching and optimisation of system configuration. However, the
optimisation of each component and its matching application in
SAASHP should be further considered.

Current studies on solar collectors mainly adopt the collector
designed for solar domestic HW. For flat plate collector, the uncovered
solar collectors are superior to covered solar collectors at the collector
area less than 15 m2 Small-scale SAASHPs for the domestic sector
require high-efficient solar collectors, which may be achieved by
auxiliary components such as concentrator.

The development of specific collectors for SAASHP should match the
development of TES methods. The latent heat TES brings better storage
and system performance over sensible heat TES, although latent heat
TES is not economical yet. Basically, solar collector is expected to collect
more solar energy to improve SAASHP’s COP and SPF. Currently, for
common SAASHPs using sensible heat TES, solar collector is expected to
achieve higher outlet temperature to store more thermal energy at the
same storage volume. Seasonal storage of surplus solar thermal energy is
most suitable for a GSHP with underground storage in the form of a
borehole TES, aquifer TES or a buried water tank in the ground (PCM).
For SAASHP, short-term thermal energy storage in an HW storage tank
for daily use is suitable, in particular, enhanced by PCM. In the future, as
PCM is developed to improve the efficiency of TES and combined with
the defrosting method for the smooth operation of systems with evap-
orator i.e. hybrid SAASHP, the collector outlet temperature should be
above the phase change temperature.

Further studies are needed to improve the defrosting process. In
component level, the material or the structure of the air source evapo-
rator can be optimised to prevent or reduce the freezing process. In
system level, optimisation on system configuration is also a potential
approach for dual-source IX-SAASHP and hybrid SAASHP.

Currently, refrigerants (e.g. R22, R134a, R410A and R407C) are
widely used in HP systems due to their good thermodynamic and ther-
mophysical properties. R32 is a more environmentally friendly alter-
native refrigerant for R410A in ASHP. However, it is classified as a
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flammable refrigerant A2L and therefore some countries are researching
other retrofits, such as R454B. Therefore, future studies should
concentrate more on the applications of environmentally friendly re-
frigerants in SAASHPs responding to global restrictions.

The outcome of this review is expected highly beneficial and valu-
able to the academia and engineers working with SAASHP systems, the
HP/solar collector manufacturers and suppliers, installers and service
workers, policy makers and energy experts.
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