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Problem Solving Techniques - 1

• A step-by-step approach
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Problem Solving Techniques - 2

• A step-by-step approach

Thermodynamics
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Problem Solving Techniques - 3

1. Problem statement; info given, to be found, objectives

2. Draw a schematic; indicate relevant info on

3. Assumptions and approximations; simplify, justify

4. Physical laws; apply relevant laws and principles

5. Properties; property relations, tables, property source

6. Calculations; units, significant number (“do not copy”)

7. Reasoning, verification, and discussion; validity, 
significance, implications, conclusions, recommendations, 
limitations, 

• General step-by-step approach

8. Neatness, organization, completeness, visual appearance



Problem Solving Techniques - 4

• Conservation of mass, momentum, energy & 
electrical charge (the first law of thermodynamics)
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Problem Solving Techniques - 5

• Balance of entropy (ΔSirr)
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Problem Solving Techniques - 6

• Sign “convention”

Q W



Fundamental Concepts - 1

• Thermodynamic system
material, body, amount of fluid, under discussion, 
identifiable collection of matter

System

Surroundings/Environments

Boundary



Fundamental Concepts - 2

Boundary
• Fixed and moving
• Real and imaginary; work
• “Thermal conductor” and adiabatic; heat
• Permeable and non-permeable; mass

• Thermodynamic system

Surroundings/Environments



Fundamental Concepts - 4

• Thermodynamic system
Closed system (control mass)

Closed system

m = constant

No mass transferred 
across boundary

Energy may be 
transferred across 
boundary

System boundary



Fundamental Concepts - 5

• Thermodynamic system
Open system (control volume)

Real boundary

nozzle

Imaginary 
boundary

Moving 
boundary

Fixed 
boundary



Fundamental Concepts - 6

• Thermodynamic system
Isolated system

Isolated System Boundary

Mass

System

Surr3

Surr 4
Mass

Heat

Work

Surr 1

Heat = 0
Work = 0
Mass = 0
Across
Isolated
Boundary

Surr 2



Fundamental Concepts - 7

• Property of a system
Characteristic of a system which can be measured

• Extensive properties
mass m, volume V, energy E, entropy S, etc. 

• Intensive properties
pressure P, temperature T, specific volume v, etc.



Fundamental Concepts - 8

• Energy, E and entropy, S

• dE = 0

• dS ≥ 0

For an isolated system the 
internal energy is constant and 
the entropy can only increase. 
Entropy is constant for ideal 
reversible process



E, S, V     fundamental thermodynamic properties (extensive)

Specific quantity – quantity / mass of system

Specific properties
v = V / m, e = E / m, s = S / m

w = W / m, q = Q / m
Other specific quantities

Specific force of gravity m g / m = g
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Fundamental concepts - 9

• Property of a system



Fundamental Concepts - 10

• Equilibrium
The properties of systems (“left alone” i.e. isolated)
are observed to attain constant values, i.e. the 
system comes to equilibrium. Subsystems in 
equilibrium are themselves in equilibrium
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Fundamental Concepts - 11

• Equilibrium state

When all of the properties of a system are constant

How many independent properties are needed in 
order to determine a equilibrium state?



Fundamental Concepts - 12

• Simple fluid

• Φ(e, s, v) = 0
• s = s(e, v)
• e = e(s, v)

• For unit mass of a simple homogenous fluid

• ψ(E, S, V) = 0
• S = S(E, V)
• E = E(S, V)



Equilibrium State - 1

• Temperature and pressure
• Consider isolated system shown comprising two subsystems A 

and B

• A + B isolated; A and B not isolated from each other

• Entropy is extensive so S = SA + AB

• System is isolated so

• EA + EB = constant
• VA + VB = constant



Equilibrium State - 2

• Temperature and pressure

• (a) Energy may be shared between A and B if the dividing 
boundary permits energy transfer (thermal conductor).

• (b) Volume may be shared between A and B if the dividing 
boundary is freely movable.

• The equilibrium state of the isolated system must be an 
equilibrium state of A and an equilibrium state of B with energy 
and volume distributed between the two so as to maximize the 
total entropy



Equilibrium State - 3

• Temperature and pressure

• It may be shown that when (a) is true

(∂E/∂S)V =      (∂E/∂S)V

System A          System B

• Thermodynamic temperature of a simple fluid system is defined 
by

T = (∂E/∂S)V = (∂e/∂s)v



Equilibrium State - 4

• Temperature and pressure
• It may be shown that when (b) is true

(∂E/∂V)S =      (∂E/∂V)S

System A           System B

• Thermodynamic pressure of a simple fluid system is defined by

P = - (∂E/∂V)S = - (∂e/∂v)s



Equilibrium State - 3

• Temperature and pressure
• So, for equilibrium

• TA = TB when separating boundary is a “thermal conductor”

• PA = PB when separating boundary is freely moveable

• Driving force

dE = TdS – PdV             de = Tds – Pdv
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• Pressure

• Pabs = Patm + Pgauge (Be careful!)

Equilibrium State - 6



• Temperature

• T = t + 273.15

• Absolute temperature should 
be used in all thermodynamics 
calculation.

Equilibrium State - 7



Equilibrium State - 8

• Two-property rule for closed simple fluid system

• E = E(S, V) (1)
• T = (∂E/∂S)V = T(S, V) (2)
• P = - (∂E/∂V)S = P(S, V) (3)

• Homogeneous closed system
• e = e(s, v) (1)
• T = (∂e/∂s)v = T(s, v) (2)
• P = - (∂e/∂v)s = P(s, v) (3)

For equilibrium states



Gibbs Phase Rule

• Multicomponent, multiphse system

• IV = C – PH + 2

IV – the number of independent variables
C – the number of components (constituents, species)
PH – the number of phases present in equilibrium



Summary – Property rule

• Closed system (constant mass)

State is fixed by any 2 of E, S, V, P, T, G, H

• Homogeneous closed system

• Homogeneous phase of pure fluid

Intensive state is fixed by any 2 of e, s, v, P, T, g, h

Intensive state is fixed by any 2 of e, s, v, P, T, g, h
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• Summary

• If cv can be taken constant between T1 and T2, then, 
for a quasi-equilibrium constant volume process
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Specific Heat-Capacities



• For real gases at low pressure Pv/T ≈ constant

• We define an ideal gas as a fluid for which

• Therefore real gases at low pressures approximate 
to ideal gases. R has a different value for different 
gases and is called the specific ideal-gas constant

Ideal Gas - 1

Pv/T = R = constant

• Ideal gas - (Chemistry) a hypothetical gas whose 
molecules occupy negligible space and have no 
interactions, and which consequently obeys the     
gas law exactly.



• Summary

Pv/T = R (constant) P1v1/T1 = P2v2/T2

Ideal Gas - 2
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Perfect Gas

• Summary

• e2 – e1 = cv(T2 – T1)

• h2 – h1 = cP(T2 – T1)

• s2 – s1 = 3 expressions in terms of (T, v), (T, P), (P, v)

• For isentropic (constant s) process

• Pvγ = constant; P1v1
γ = P2v2

γ

• γ = cP/cv = constant for perfect gas

• Pv = RT and cv, cP constant



Fundamental concepts - 13

• Quasi-equilibrium (quasi static, non-dissipative, 
internally reversible) process

Ideal process performed so slowly that system is 
always in an equilibrium state i.e. during the 
process the system passes through a continuous 
sequence of equilibrium states, e.g. compression 
of a gas in a cylinder infinitely slowly.



Fundamental concepts - 14

• Summary
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Fundamental Concepts - 15

• Process
Change from one equilibrium state to another

States between 2 end states can be equilibrium 
or non-equilibrium. Work and Heat later.



Fundamental concepts - 16

• Process illustration
P – V and T – S diagrams



Fundamental Concepts - 17

• Polytropic process

• Pvn = constant                     -∞< n <∞
•
• Isobaric P = constant            0
• Isothermal  T = constant             1
• Isentropic   S = constant            γ
• Isochoric    V = constant           -/+∞



Fundamental Concepts - 18

• Polytropic Process



Fundamental Concepts - 19

• Polytropic Process



Fundamental concepts - 20

• Process
Process illustration (P – V diagram)

Property?



Fundamental concepts - 21

• Process
Process illustration (T – S diagram)

Property?



Fundamental concepts - 22

• Cycle
A serious of a connected processes with identical 
end states

Process B

Process A
1

2
P

V

Process B

Process A
1

2
P

V

Property?



Fundamental concepts - 23

• Carnot cycle – an example
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COP (Coefficient Of Performance) = Desired output/Required input



Laws of thermodynamics - 1

• The zeroth law of thermodynamics
R. H. Fowler (1931)

A C B C



Laws of thermodynamics - 2

• The first law of thermodynamics

For any process of a stationary system

W + Q = E2 – E1

Steady flow energy equation (SFEE)

W + Q = Σ[m(h + v2/2 + gz)]2 – Σ[m(h + v2/2 + gz)]1



Spontaneous (no outside influence) processes lead 
to increase in entropy. This is the essence of the 
Second Law of Thermodynamics.

• Entropy and the 2nd Law of thermodynamics

Laws of thermodynamics - 3

• dE = 0

• dS ≥ 0

For an isolated system the 
internal energy is constant and 
the entropy can only increase. 
Entropy is constant for ideal 
reversible process



Property of Pure Substances

• The P-V-T Surface for a Real Substance



Average specific properties for 2-phase states



Average specific properties for 2-phase states



Relation of properties - 1

E H

GF

P  v

P  v

T
s

T
s

F – Helmholtz function;   G – Gibbs function;    H – enthalpy



Relation of properties - 2

E H

GF

P  v

P  v

T
s

T
s

E = F + TS E = H – PV
F = E – TS F = G – PV
G = F + PV G = H – TS
H = E + PV H = G + TS



Relation of properties - 3

E H

GF

P  v

P  v

T
s

T
s

de = Tds – Pdv
dh = Tds + vdP
df  = -sdT – Pdv
dg = -sdT + vdP

( ) ( ) ( )å= fardnearcornerd
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