
LTCC, Measure-Theoretic Probability: Examination AY 2023/24

You may refer without proof to results from the course (theorems, examples, etc.).

Q1 Let (Ω,F , µ) be a measurable space with finite measure µ. The measure µ is called non-atomic
if for every A ∈ F with µ(A) > 0 there exists B ∈ F such that B ⊂ A and 0 < µ(B) < µ(A). This
question aims to show that the non-atomic measure assumes all intermediate values.

(i) For non-atomic finite measure µ on (R,B(R)), consider the function F (x) = µ((−∞, x]).
Show that for every 0 < t < µ(R) there exists x ∈ R such that F (x) = t.

(ii) Let µ be a non-atomic finite measure µ on (Ω,F). Show that for every ε > 0 there exists a
finite collection of pairwise disjoint F-measurable sets A1, . . . , An (for some n ≥ 1) such that⋃n

k=1Ak = Ω and µ(Ak) ≤ ε for 1, . . . , n. You may work in steps:

(1) Show that every set A ∈ F of positive measure has a measurable subset B ⊂ A with
0 < µ(B) ≤ ε.

(2) If µ(Ω) > ε find A1 such that 0 < µ(A1) ≤ ϕ(Ω), and then construct by induction a
sequence (finite or infinite) of disjoint F-measurable sets A1, A2, . . . satisfying
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≤ µ(Am+1) ≤ ε,

where ϕ(A) := sup{µ(B) : B ∈ F , B ⊂ A, µ(B) ≤ ε} for A ∈ F . If the sequence is
finite, say A1, . . . , An, it should not be extendible by adding another set An+1.

(3) ForA0 = Ω\
⋃

k Ak, where the union (finite or infinite) is over k ≥ 1, show that µ(A0) = 0.

(iii) Use the result in part (ii) to prove that for 0 < t < µ(Ω) there exists A ∈ F with µ(A) = t. Is it
sufficient to only consider the case t = µ(Ω)/2?

Q2 A box has initially r red and g green balls. A ball is drawn at random, its colour is observed, and
the ball is returned to the box together with d balls of this very colour. This is repeated many times.
Let Rn be the number of red balls in the box after n draws.

(i) Show that the proportion of red balls

Xn =
Rn

nd+ r + g
, n ∈ N,

is a martingale relative to the natural filtration Fn = σ(X1, . . . , Xn).

(ii) Argue that Xn converges almost surely and in the mean.

(iii) For r = g = d = 1 show by induction that the distribution of Rn is uniform on {1, . . . , n+ 1},
and so find the limit distribution of Xn.

(iv) For r = g = d = 1 show that (Rn−1)/n, n ∈ N, is a reversed martingale (that is, the sequence
has the martingale property if viewed backwards). What is the appropriate filtration in this case?
You may use without proof that the reversed sequence is a Markov chain. Hint: compute the
backward transition probabilities P [Rn = k|Rn+1 = m] for k = m− 1 and k = m.
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Q3 Let (B(t), t ≥ 0) be the Brownian motion.

(i) Determine
E[B(t)|B(s) = x,B(u) = y]

for s < t < u and all other possible orderings of positive distinct s, t, u (e.g. t < s < u).

(ii) Let τx := inf{t : B(t) = x}.

(a) Find explicitly the density of the random variable τx for x > 0 and show that E[τx] = ∞.
Hint: recall the distribution of the maximum of the BM on a given interval [0, t].

(b) Prove that the random variable τx+y− τx is independent of τx and has the same distribution
as τy for x, y > 0.

(c) Generalising (b), show that the random process (τx, x ≥ 0) (having x in the role of time
variable) has independent increments. That is, for 0 < x1 < · · · < xn the random variables
τxk
− τxk−1

(where τ0 = 0, k ≤ n) are independent.

(iii) Let (W (t), t ≥ 0) be another Brownian motion, independent of (B(t), t ≥ 0). For τx introduced
in part (ii), find the probability density function of the random variable W (τx).

The two-dimensional process ((B(t),W (t)), t ≥ 0) is called the planar Brownian motion.
Then, τx is the time the process needs to first-hit a vertical line, and W (τx) is the position on
this line.
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