You may refer without proof to results from the course (theorems, examples, etc.).

Q1 Let $(\Omega, \mathcal{F}, \mu)$ be a measurable space with finite measure μ . The measure μ is called *non-atomic* if for every $A \in \mathcal{F}$ with $\mu(A) > 0$ there exists $B \in \mathcal{F}$ such that $B \subset A$ and $0 < \mu(B) < \mu(A)$. This question aims to show that the non-atomic measure assumes all intermediate values.

- (i) For non-atomic finite measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, consider the function $F(x) = \mu((-\infty, x])$. Show that for every $0 < t < \mu(\mathbb{R})$ there exists $x \in \mathbb{R}$ such that F(x) = t.
- (ii) Let μ be a non-atomic finite measure μ on (Ω, \mathcal{F}) . Show that for every $\varepsilon > 0$ there exists a finite collection of pairwise disjoint \mathcal{F} -measurable sets A_1, \ldots, A_n (for some $n \ge 1$) such that $\bigcup_{k=1}^n A_k = \Omega$ and $\mu(A_k) \le \varepsilon$ for $1, \ldots, n$. You may work in steps:
 - (1) Show that every set $A \in \mathcal{F}$ of positive measure has a measurable subset $B \subset A$ with $0 < \mu(B) \le \varepsilon$.
 - (2) If $\mu(\Omega) > \varepsilon$ find A_1 such that $0 < \mu(A_1) \le \varphi(\Omega)$, and then construct by induction a sequence (finite or infinite) of disjoint \mathcal{F} -measurable sets A_1, A_2, \ldots satisfying

$$\frac{1}{2}\varphi\left(\Omega\setminus\bigcup_{k=1}^{m}A_{k}\right)\leq\mu(A_{m+1})\leq\varepsilon,$$

where $\varphi(A) := \sup\{\mu(B) : B \in \mathcal{F}, B \subset A, \mu(B) \leq \varepsilon\}$ for $A \in \mathcal{F}$. If the sequence is finite, say A_1, \ldots, A_n , it should not be extendible by adding another set A_{n+1} .

- (3) For $A_0 = \Omega \setminus \bigcup_k A_k$, where the union (finite or infinite) is over $k \ge 1$, show that $\mu(A_0) = 0$.
- (iii) Use the result in part (ii) to prove that for $0 < t < \mu(\Omega)$ there exists $A \in \mathcal{F}$ with $\mu(A) = t$. Is it sufficient to only consider the case $t = \mu(\Omega)/2$?

Q2 A box has initially r red and g green balls. A ball is drawn at random, its colour is observed, and the ball is returned to the box together with d balls of this very colour. This is repeated many times. Let R_n be the number of red balls in the box after n draws.

(i) Show that the proportion of red balls

$$X_n = \frac{R_n}{nd + r + g}, \quad n \in \mathbb{N},$$

is a martingale relative to the natural filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.

- (ii) Argue that X_n converges almost surely and in the mean.
- (iii) For r = g = d = 1 show by induction that the distribution of R_n is uniform on $\{1, \ldots, n+1\}$, and so find the limit distribution of X_n .
- (iv) For r = g = d = 1 show that $(R_n 1)/n$, $n \in \mathbb{N}$, is a *reversed* martingale (that is, the sequence has the martingale property if viewed backwards). What is the appropriate filtration in this case? You may use without proof that the reversed sequence is a Markov chain. Hint: compute the backward transition probabilities $\mathbb{P}[R_n = k | R_{n+1} = m]$ for k = m - 1 and k = m.

Q3 Let $(B(t), t \ge 0)$ be the Brownian motion.

(i) Determine

$$\mathbb{E}[B(t)|B(s) = x, B(u) = y]$$

for s < t < u and all other possible orderings of positive distinct s, t, u (e.g. t < s < u).

(ii) Let $\tau_x := \inf\{t : B(t) = x\}.$

- (a) Find explicitly the density of the random variable τ_x for x > 0 and show that $\mathbb{E}[\tau_x] = \infty$. Hint: recall the distribution of the maximum of the BM on a given interval [0, t].
- (b) Prove that the random variable $\tau_{x+y} \tau_x$ is independent of τ_x and has the same distribution as τ_y for x, y > 0.
- (c) Generalising (b), show that the random process $(\tau_x, x \ge 0)$ (having x in the role of time variable) has independent increments. That is, for $0 < x_1 < \cdots < x_n$ the random variables $\tau_{x_k} \tau_{x_{k-1}}$ (where $\tau_0 = 0, k \le n$) are independent.
- (iii) Let $(W(t), t \ge 0)$ be another Brownian motion, independent of $(B(t), t \ge 0)$. For τ_x introduced in part (ii), find the probability density function of the random variable $W(\tau_x)$.

The two-dimensional process $((B(t), W(t)), t \ge 0)$ is called the planar Brownian motion. Then, τ_x is the time the process needs to first-hit a vertical line, and $W(\tau_x)$ is the position on this line.