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Question 1 [24 marks].

(a) Let f : R → R be defined by f(x) = x3 − 3x2 + 3x.

(i) Determine all fixed points of f . [3]

(ii) Determine, with justification, whether each fixed point is attracting or
repelling. [3]

(iii) Determine the basin of attraction of each attracting fixed point. [3]

(iv) Give an example of an eventually periodic orbit that is not periodic, or
explain why such points do not exist. [3]

(b) Let f : R → R be defined by f(x) = x+ 1.

(i) Determine, with justification, whether f is topologically conjugate to
g1 : R → R defined by g1(x) = x+ 2. [3]

(ii) Determine, with justification, whether f is topologically conjugate to
g2 : R → R defined by g2(x) = x− 1. [3]

(iii) Determine, with justification, whether f is topologically conjugate to
g3 : R → R defined by g3(x) = −x+ 1. [3]

(iv) Determine, with justification, whether f is topologically conjugate to
g4 : R → R defined by g4(x) = x2 − 1. [3]

1(a)(i) Fixed points are 0, 1 and 2, since f(x)− x = x(x2 − 3x+ 2) = x(x− 1)(x− 2).

(ii) Points 0 and 2 are repelling, and 1 is attracting.
Justification: f ′(x) = 3x2 − 6x+ 3, so |f ′(0)| = 3 > 1, |f ′(1)| = 0, and |f ′(2)| = 3 > 1,
and a result from the module states that for a fixed point p, if |f ′(p)| < 1 then p is
attracting, and if |f ′(p)| > 1 then p is repelling.

(iii) The basin of attraction of the fixed point 1 is (0, 2) (note that if x > 2 or x < 0
then |fn(x)| → ∞ as n → ∞).

(iv) There are no such points, since f is injective, and a result from the module states
that for injective maps every eventually periodic point is actually periodic. Injectivity
follows from the fact that f is strictly increasing, since f ′(x) = 3(x− 1)2 ≥ 0 for all
x ∈ R, and f ′(x) > 0 for all x ∈ R \ {1}.
(b)(i) Yes, f and g1 are conjugate: the map h(x) = 2x is a homeomorphism, and
hf(x) = 2(x+ 1) = 2x+ 2 = h(x) + 2 = g1h(x).

(ii) Yes, f and g2 are conjugate. The map h(x) = −x is a homeomorphism, and
hf(x) = −(x+ 1) = −x− 1 = h(x)− 1 = g2h(x).

(iii) No, they are not conjugate: f has no fixed point, whereas g3 has a fixed point (at
x = 1/2), and maps with a different number of fixed points cannot be topologically
conjugate.

(iv) No, they are not conjugate: f has no fixed points or period-2 points, whereas g4
has two fixed points, and a 2-cycle {0,−1}.
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Question 2 [27 marks]. For parameters λ ∈ [0, 1], define fλ : [0, 1] → [0, 1] by
fλ(x) = λ sin(πx).

(a) Sketch the graphs of the functions f1/4 and f1. [2]

(b) Determine the value λ1 ∈ (0, 1) such that the fixed point 0 is attracting for
λ ∈ [0, λ1) and repelling for λ ∈ (λ1, 1]. [3]

(c) Show that if λ ∈ (λ1, 1] then fλ has a non-zero fixed point. [4]

Henceforth, assume that for λ ∈ (λ1, 1] the non-zero fixed point of fλ is unique, and
denoted by xλ.

(d) Determine the value of λ such that xλ = 1/6. [2]

(e) Determine the value of λ such that xλ = 1/2. [2]

(f) Show that if λ = 4
√
3/9 then xλ = 2/3. [2]

(g) Show that the point 1/6 is eventually periodic for the map f1(x) = sin(πx). [2]

(h) Sketch the graph of f 3
1 , taking care to mark the value of this function at the

points α, β, 1− α, 1− β, where α = 1
π
arcsin(1/6), β = 1

π
arcsin(5/6). [3]

(i) Show that f1 has a point of least period 3. [4]

(j) Determine, with justification, whether f1 has a point of least period 314159. [3]

2(a) One mark for each graph.
(b) λ1 = 1/π. This is because f ′

λ(x) = πλ cos(πx), so |f ′
λ(0)| = πλ, which is strictly less

than 1 if λ < 1/π, and strictly greater than 1 if λ > 1/π.

(c) Let gλ(x) = fλ(x)− x. Then g′λ(x) = πλ cos(πx)− 1. So gλ(0) = 0 for all λ, and if
λ > λ1 then g′λ(0) = πλ− 1 > 0 so g′λ(x) > 0 for x close enough to 0 (since gλ is C1).
Picking a particular such x with g′λ(x) > 0, we then note that gλ(1) < 0, so by the
Intermediate Value Theorem there exists xλ ∈ (x, 1) such that gλ(xλ) = 0, i.e. such that
fλ(xλ) = xλ, as required.

(d) The fixed point equation xλ = fλ(xλ) becomes 1/6 = λ sin(π/6) = λ/2, so λ = 1/3.

(e) λ = 1/2, since the fixed point equation xλ = fλ(xλ) becomes 1/2 = λ sin(π/2) = λ.

(f) If λ = 4
√
3/9 then λ sin(π(2/3)) = λ

√
3/2 = 4

√
3/9×

√
3/2 = 12/18 = 2/3, so 2/3 is

the non-zero fixed point.

(g) Now f1(1/6) = sin(π/6) = 1/2, so f 2
1 (1/6) = f1(1/2) = sin(π/2) = 1, so

f 3
1 (1/6) = f1(1) = sin(π) = 0, and 0 is a fixed point. So 1/6 is an eventually fixed point,
so in particular an eventually periodic point, for the map f1.

(h) Graph has 8 humps, taking value 0 at the five points 0 < 1/6 < 1/2 < 5/6 < 1, and
in the 4 intervals between these points it takes the value 1 at α < β < 1− β < 1− α.
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(i) The line y = x intersects the graph of f 3
1 at 8 points. Two of these points are the

fixed points for f1, namely 0 and xλ, and the other six points all have least period 3
under f1.

(j) f1 does have a point of least period 314159. Justification: Since f1 is continuous,
and from part (i) it has points of least period 3, Sharkovskii’s Theorem implies f1 has
points of least period n for all natural numbers n.
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Question 3 [25 marks]. Let f : R → R be defined by

f(x) =



5/6 if x < 0

x+ 5/6 if 0 ≤ x < 1/6

4/3− 2x if 1/6 ≤ x < 2/3

x− 2/3 if 2/3 ≤ x ≤ 1

1/3 if x > 1 .

(a) Sketch the graph of f . [3]

(b) Determine the fixed point p of f . [3]

(c) Determine the orbit under f of the point 0. [3]

(d) Show that if x ∈ (1/3, 2/3), with x ̸= p, then there exists N ∈ N such that
fN(x) /∈ (1/3, 2/3). [6]

(e) Show that if x ∈ [0, 1/3] then f(x) ∈ [2/3, 1], and that if x ∈ [2/3, 1] then
f(x) ∈ [0, 1/3]. Use this to deduce that, for all integers n ≥ 0, if x ∈ [0, 1/3] then
f 2n+1(x) ∈ [2/3, 1], and that if x ∈ [2/3, 1] then f 2n+1(x) ∈ [0, 1/3]. [5]

(f) Using (c), (d) and (e), or otherwise, determine the set of n ∈ N such that f has an
n-cycle. [5]

3(a) Graph is continuous, piecewise-linear, with maximum value 1 at 1/6, minimum
value 0 at 2/3, and no other turning points.

(b) The fixed point is p = 4/9, i.e. the solution to 4/3− 2x = x.

(c) The orbit is {0, 5
6
, 1
6
, 1, 1

3
, 2
3
}, since

0 7→ 5/6 7→ 5/6− 2/3 = 1/6 7→ 1 7→ 1/3 7→ 4/3− 2/3 = 2/3 7→ 0.

(d) If x ∈ (1/3, 2/3), with x ̸= p = 4/9, then either x ∈ (1/3, 4/9) or x ∈ (4/9, 2/3). If
x ∈ (1/3, 4/9) then f(x) > 4/9, and the distance between f(x) and p is twice the
distance between x and p, since
|f(x)− p| = f(x)− 4/9 = 8/9− 2x = 2(4/9− x) = 2|x− p|. Similarly, If x ∈ (4/9, 2/3)
then f(x) < 4/9, and the distance between f(x) and p is twice the distance between x
and p, since |f(x)− p| = 4/9− f(x) = 2x− 8/9 = 2(x− 4/9) = 2|x− p|. It follows that
if f i(x) ∈ (1/3, 2/3) for 0 ≤ i ≤ n− 1 then the distance between fn(x) and p is 2n times
the distance between x and p, and for sufficiently large n the distance between fn(x)
and p will be larger than 1/3, so fn(x) will be outside of (1/3, 2/3).

(e) If x ∈ [0, 1/3] then either x ∈ [0, 1/6) or x ∈ [1/6, 1/3].
If x ∈ [0, 1/6) then f(x) = x+ 5/6 ∈ [5/6, 1] ⊂ [2/3, 1]. If x ∈ [1/6, 1/3] then x ≥ 1/6 so
f(x) = 4/3− 2x ≤ 4/3− 1/3 = 1, and x ≤ 1/3 so f(x) = 4/3− 2x ≥ 4/3− 2/3 = 2/3,
so f(x) ∈ [2/3, 1].
If x ∈ [2/3, 1] then f(x) = x− 2/3 ∈ [0, 1/3].
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It follows that if x ∈ [0, 1/3] then fn(x) ∈ [0, 1/3] for even n, and fn(x) ∈ [2/3, 1] for
odd n, as required. Similarly, if x ∈ [2/3, 1] then fn(x) ∈ [2/3, 1] for even n, and
fn(x) ∈ [0, 1/3] for odd n, as required.

(f) The set is {1} ∪ {2m : m ∈ N}, i.e. the map f has an n-cycle for n = 1 and all even
natural numbers n, but not for any odd natural numbers n > 1.
Justification: Part (d) implies that the only periodic point in (1/3, 2/3) is the fixed
point p. Part (e) implies that if x ∈ [0, 1/3] ∪ [2/3, 1] then x is not of period n for any
odd number n. By part (c) there is a 6-cycle, and since f is continuous, Sharkovskii’s
Theorem then implies that f has an n-cycle for all even n (since 6 is larger than all
other even numbers in the Sharkovskii order, but is smaller than all odd numbers
except for 1).
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Question 4 [24 marks].

(a) Given an iterated function system in R2 defined by the 4 maps
ϕ0(x, y) = (x/3, y/3), ϕ1(x, y) = ((x+ 2)/3, y/3), ϕ2(x, y) = (x/3, (y + 2)/3),
ϕ3(x, y) = ((x+ 2)/3, (y + 2)/3), define Φ(A) = ∪3

i=0ϕi(A) for all sets A ⊂ R2, and
let Fk denote Φk([0, 1]2) for k ≥ 0.

(i) Determine the set F1. [3]

(ii) If Fk is expressed as a disjoint union of Nk closed squares, compute the
number Nk. [3]

(iii) What is the common side length of each of the Nk squares whose disjoint
union equals Fk? [3]

(iv) Compute the box dimension of F = ∩∞
k=0Fk, being careful to justify your

answer. [5]

(b) If C ⊂ [0, 1] denotes the middle third Cantor set, compute the box dimension of
the set C × [0, 1] = {(x, y) : x ∈ C, y ∈ [0, 1]} ⊂ R2. [5]

(c) (i) For a map f : [0, 1] → R, how is the set of non-escaping points defined? [2]

(ii) Give an example, with justification, of a map f whose set of non-escaping
points has box dimension strictly smaller than 1/2. [3]

4(a)(i) F1 consists of the 4 squares [0, 1/3]× [0, 1/3], [0, 1/3]× [2/3, 1], [2/3, 1]× [0, 1/3]
and [2/3, 1]× [2/3, 1].

(ii) Fk = 4k.

(iii) The side length is (1/3)k.

(iv) If εk = 1/3k then N(εk) = 4k, so the box dimension equals

lim
k→∞

logN(εk)

− log εk
= lim

k→∞

log 4k

− log(1/3)k
=

log 4

log 3
.

(b) The box dimension is 1 + log 2/ log 3.
One way of seeing this is to augment the iterated function system in part (a) with two
additional maps, ϕ4(x, y) = (x/3, (y + 1)/3) and ϕ5(x, y) = ((x+ 2)/3, (y + 1)/3). The
resulting iterated function system Ψ, given by Ψ(A) = ∪5

i=0ϕi(A), is such that
∩∞

k=0Φ
k([0, 1]2) = C × [0, 1], and by a calculation analogous to the one in (a) we

compute its box dimension to be

lim
k→∞

log 6k

− log(1/3)k
=

log 6

log 3
= 1 +

log 2

log 3
.

(c)(i) The non-escaping set is {x ∈ [0, 1] : fn(x) ∈ [0, 1] for all n ≥ 1}.
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(ii) We might, for example, choose f(x) = 8x (mod 1), as here the escaping set has box
dimension equal to 1/3.
More generally, we could define f(x) = mx (mod 1), for some suitably large natural
number m. In this case the non-escaping set is equal to the set ∩∞

k=0Φ
k([0, 1]), where

Φ(A) = ∪1
i=0ϕi(A), and ϕ0(x) = x/m, ϕ1(x) = (x+m− 1)/m. The box dimension of

this set is log 2/ logm, and this is strictly smaller than 1/2 provided m ≥ 5.

End of Paper.
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