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Question 1. [22 marks]

(a) How is Sharkovsky’s ordering of N defined? [3]

(b) State Sharkovsky’s Theorem. [3]

(c) Let the map f : R→ R be given by the formula f (x) = 1−ax2, where the
constant a ≈ 1.75488 is defined to be the real solution to the equation
a(1−a)2 = 1.

Show that the orbit under f of the point 1 is periodic. Determine the minimal
period of this orbit, and whether this orbit is unstable, stable, or superstable. [5]

(d) Show that f has an orbit of minimal period n for every n ∈ N. [3]

(e) Find all of the fixed points of f , and determine whether each fixed point is
unstable, stable, or superstable. [4]

(f) Let F denote the restriction of f to the interval [−1,1]
(i.e. F : [−1,1]→ [−1,1] is defined by F(x) = 1−ax2).

(i) Is every periodic orbit for f also a periodic orbit for F? Justify your
answer. [2]

(ii) Does F have an orbit of minimal period n for every n ∈ N? Justify your
answer. [2]

Solution:

(a) Sharkovsky’s ordering ≺ of the natural numbers is given by:

1 ≺ 2 ≺ 22 ≺ 23 ≺ ·· · ≺ 2m ≺ ·· ·
...

· · · ≺ 2k(2n−1)≺ ·· · ≺ 2k ·7 ≺ 2k ·5 ≺ 2k ·3 ≺ ·· ·
...

· · · ≺ 2(2n−1)≺ ·· · ≺ 2 ·7 ≺ 2 ·5 ≺ 2 ·3 ≺ ·· ·

· · · ≺ 2n−1 ≺ ·· · ≺ 7 ≺ 5 ≺ 3 .

(b) Sharkovsky’s Theorem says that if f : R→ R is continuous, and has a
periodic orbit of minimal period n, then it has a periodic orbit of minimal
period m for all m ≺ n.

(c) Now f (1) = 1−a, and f (1−a) = 1−a(1−a)2 = 0 by definition of a, and
f (0) = 1, so the orbit {1,1−a,0} is periodic under f , of minimal period 3.

The orbit is superstable, since the point 0 is in the orbit, and 0 is the critical
point for f (thus ( f 3)′(1) = ( f 3)′(0) = 0).
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(d) Since f is a continuous self-map of R, and has an orbit of minimal period 3,
then Sharkovsky’s Theorem implies it has an orbit of minimal period n for
every n ∈ N, since 3 is the largest natural number in Sharkovsky’s ordering.

(e) Fixed points are (real) solutions of 1−ax2 = x, i.e. roots of the quadratic
polynomial ax2 + x−1, and these are the two points x+ and x− given by

x± =
1

2a

(
−1±

√
1+4a

)
.

Now f ′(x) =−2ax, so f ′(x+) = 1−
√

1+4a and f ′(x−) = 1+
√

1+4a.
Since a ≈ 1.75488 then a > 7/4 so

√
1+4a >

√
8. Therefore

f ′(x+)< 1−
√

8 <−1, and f ′(x−)> 1+
√

8 > 1. It follows that both of the
fixed points x± are unstable, since | f ′(x±)|> 1.

(f) (i) This is not the case: f has two fixed points, but F only has a single
fixed point x+ = 1

2a

(
−1+

√
1+4a

)
(note that x− is not a fixed point

for F since x− = 1
2a

(
−1−

√
1+4a

)
<−1 does not lie in [−1,1]).

(ii) F does have an orbit of minimal period n for every n ∈ N. To see this it
suffices to apply Sharkovsky’s theorem to a continuous map g : R→ R
whose restriction to [−1,1] equals F and which has no periodic points
in R\ [−1,1]. Now F(1) = F(−1) = 1−a, so define g : R→ R to
equal the constant 1−a on R\ [−1,1], and to equal F on [−1,1]; this g
has the required properties, since the points in R\ [−1,1] are not
periodic (in fact they are pre-periodic). Now g has an orbit of minimal
period 3 (namely {1,1−a,0}), so by Sharkovsky it has an orbit of
minimal period n for every n ∈ N, therefore so does F .
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Question 2. [30 marks] Let H denote the collection of compact subsets of R.
Let Φ : H → H be the iterated function system defined by the two maps
φ1(x) = x/5 and φ2(x) = (x+4)/5, and let Ck denote Φk([0,1]) for k ⩾ 0.

(a) For A,B ∈ H , what is the definition of the Hausdorff distance h(A,B)? [5]

(b) Write down the sets C1 and C2. [4]

(c) Compute h(C1,C2). [5]

(d) If Ck is expressed as a disjoint union of Nk closed intervals, compute the
number Nk. [3]

(e) What is the common length of each of the Nk closed intervals whose disjoint
union equals Ck? [3]

(f) Given a set A ⊂ R, what is the definition of its box dimension? [5]

(g) Using your answers to parts (d) and (e), or otherwise, show that if the box
dimension of C = ∩∞

k=0Ck exists then it must equal log2/ log5. [5]

Solution:

(a) Let d(·, ·) be the usual distance function on R. For A ∈ H , and x ∈ R, define
ρ(x,A) = miny∈A d(x,y).

Then define hBA = maxx∈B ρ(x,A), and finally set

h(A,B) = max(hAB,hBA) .

(b) C1 = [0,1/5]∪ [4/5,1], and

C2 = [0,1/25]∪ [4/25,1/5]∪ [4/5,21/25]∪ [24/25,1].

(c) If A =C1, B =C2 then hBA = 0 since B ⊂ A, whilst

hAB = max
x∈C1

ρ(x,C2) = ρ(1/10,C2) = ρ(1/10,1/25) = 3/50 ,

so
h(C1,C2) = max(3/50,0) = 3/50 .

(d) Nk = 2k because N0 = 1 and the recursive procedure doubles the number of
intervals at each step.

(e) The length is 1/5k, because the length of the closed intervals decreases by a
factor of 5 at each step, and the length of C0 = [0,1] is 1.
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(f) For ε > 0 let N(ε) denote the smallest number of length-ε intervals needed
to cover A. The box dimension of A is then

lim
ε→0

logN(ε)

− logε
,

provided the limit exists.

(g) If εk = 1/5k then N(εk) = 2k, by parts (d) and (e), and so the box dimension
equals

lim
k→∞

logN(εk)

− logεk
= lim

k→∞

k log2
k log5

=
log2
log5

.
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Question 3. [22 marks]

(a) If X and Y are intervals in R, explain what it means for two maps f : X → X
and g : Y → Y to be topologically conjugate. [3]

(b) Show that if h is a topological conjugacy between f and g, then h is also a
topological conjugacy between f n and gn, for all integers n ⩾ 1. [5]

(c) Using (b) above, or otherwise, show that if f and g are topologically
conjugate then for each n ∈ N, every period-n orbit for f is mapped by the
conjugacy to a period-n orbit for g. [5]

(d) If f : [0,∞)→ [0,∞) is defined by f (x) = 4x, and g : [0,∞)→ [0,∞) is
defined by g(x) = 2x, use the map h(x) =

√
x to show that f and g are

topologically conjugate. [5]

(e) Determine whether the map F : [0,1)→ [0,1) given by F(x) = 4x (mod 1)
is topologically conjugate to the map G : [0,1)→ [0,1) given by G(x) = 2x
(mod 1), being careful to justify your answer. [4]

Solution:

(a) f and g are topologically conjugate if there exists a homeomorphism
h : X → Y such that h◦ f = g◦h.

(b) We claim that h◦ f n = gn ◦h for all n ⩾ 1, asuuming that the case n = 1
holds. The proof is by induction. Let us make the inductive hypothesis that
the equation holds for n = k. Then

h◦ f k+1 = h◦ f k ◦ f = gk ◦h◦ f = gk ◦g◦h = gk+1 ◦h

where we have used the inductive hypothesis, and the case n = 1. So the
equation holds for n = k+1, so the proof by induction is complete.

(c) Let { f i(x) : 0 ⩽ i ⩽ n−1} be a period-n orbit for f . The image under h is
{h( f i(x)) : 0 ⩽ i ⩽ n−1}, which we can write as {gi(h(x)) : 0 ⩽ i ⩽ n−1}
by (b) above, so the image set consists of iterates under g of the point h(x).
The orbit is periodic (of period n) because gn(h(x)) = h( f n(x)) = h(x) (by
(b) above, and because x has period n under f ), as required.

(d) The map h(x) =
√

x is a homeomorphism of [0,∞). Now
h( f (x)) =

√
f (x) =

√
4x = 2

√
x = 2h(x) = g(h(x)), so h is a topological

conjugacy, as required.

(e) F and G are not topologically conjugate. One way of seeing this is to note
that F only has a single fixed point (namely at 0), whereas G has 3 fixed
points (at 0, 1/3, and 2/3). This contradicts (c) above, which tells us that if
the maps are topologically conjugate then there is a one-to-one
correspondence between fixed points for f and fixed points for g.
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Question 4. [26 marks] Suppose f : [0,1]→ [0,1].

(a) If f is C1, what is the definition of the Lyapunov exponent λ (x) of f at
x ∈ [0,1]? [3]

(b) If f is C1 and x is a point of minimal period N, what is the definition of its
multiplier? [2]

(c) Use the Intermediate Value Theorem to show that if f is continuous then it
has at least one fixed point. [8]

(d) Show that if f is continuous and order reversing (i.e. f (x)> f (y) whenever
x,y ∈ [0,1] satisfy x < y) then f has a unique fixed point (you may use the
result from part (c) above). [5]

(e) Does there exist a continuous map g : (0,1)→ (0,1) which has no fixed
points? Justify your answer. [4]

(f) Does there exist a discontinuous order reversing map h : [0,1]→ [0,1] which
has no fixed points? Justify your answer. [4]

Solution:

(a) The Lyapunov exponent is defined by

λ (x) = lim
n→∞

1
n

n−1

∑
i=0

log | f ′( f ix)| ,

provided this limit exists.

(b) The multiplier is defined to equal ( f N)′(x).

(c) Define φ : [0,1]→ R by φ(x) = f (x)− x, noting that φ is continuous because
f is. Note that a point c ∈ [0,1] is a fixed point for f if and only if φ(c) = 0.

If f (0) = 0 or f (1) = 1 then f certainly has a fixed point, so suppose that
f (0) ̸= 0 and f (1) ̸= 1.

Now f (0) ∈ (0,1], so φ(0) = f (0)> 0; similarly, f (1) ∈ [0,1), so
φ(1) = f (1)−1 < 0. Using these inequalities φ(1)< 0 < φ(0), the
intermediate value theorem implies that there exists c ∈ (0,1) such that
φ(c) = 0. This value c is a fixed point for f , as required.

(d) Existence of a fixed point is guaranteed by (c) above. To prove uniqueness,
suppose that there are two points c,d ∈ [0,1], with c < d, which are both
fixed points for f . Since f is order reversing, the inequality c < d implies
that f (c)> f (d), but this means that c > d (since both points are fixed points
of f ), contradicting the assumption that c < d. Therefore there can in fact be
only one fixed point.
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(e) Such maps do exist, and it suffices to give a single example, e.g. g(x) = x/2.

(f) Such maps do exist, and it suffices to give a single example, e.g. the map
h : [0,1]→ [0,1] defined by h(x) = 1− x/2 for x ∈ [0,1/2) and
h(x) = (1− x)/2 for x ∈ [1/2,1].

End of Paper.
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