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Question 1. [27 marks]

(a) For a differentiable map f : R→ R, how is the multiplier of a periodic orbit
defined? [2]

(b) Write down a condition on the multiplier which guarantees that a periodic
orbit is stable (i.e. attractive). [2]

(c) Let fλ : [−1, 1]→ [−1, 1] be the logistic map, defined by fλ(x) = 1− λx2
for parameters λ ∈ [0, 2].

(i) For λ ∈ [0, 2), compute the fixed point x∗ = x∗(λ) ∈ [−1, 1] of fλ. [3]

(ii) Compute the multiplier of this fixed point x∗(λ). [3]

(iii) Determine the largest value λ1 with the property that the fixed point
x∗(λ) is stable for all λ ∈ [0, λ1). [2]

(iv) For λ > λ1, determine the periodic orbit of fλ which has minimal
period 2. [6]

(v) Compute the multiplier of this period-2 orbit, and determine the largest
value λ2 with the property that this orbit is stable for all λ ∈ (λ1, λ2). [4]

(vi) Briefly define what is meant by a period-doubling bifurcation. [2]

(vii) How is the Feigenbaum constant δ defined? [3]

Solution:

(a) If the orbit is generated by the point x, of minimal period n, the multiplier is
defined to be (fn)′(x). An alternative expression (courtesy of the chain rule)
is
∏n−1

i=0 f
′(f ix). [2]

(b) If the multiplier is strictly smaller than 1 in absolute value then the orbit is
stable. [2]

(c) (i) Fixed points of fλ satisfy λx2 + x− 1 = 0, so x = −1±
√
1+4λ

2λ
, of which

only

x∗(λ) =
−1 +

√
1 + 4λ

2λ

belongs to [−1, 1] when λ ∈ [0, 2). [3]

(ii) The multiplier is

f ′λ(x
∗(λ)) = −2λx∗(λ) = 1−

√
1 + 4λ . [3]

(iii) λ1 = 3/4. This is because the multiplier is a strictly decreasing
function of λ, decreasing from value 0 at λ = 0 to value −1 at λ = 3/4. [2]
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(iv) The period-2 points satisfy f 2
λ(x)− x = 0. But

f 2
λ(x) = 1− λ(1− λx2)2 = −λ3x4 + 2λ2x2 − λ+ 1 ,

so
f 2
λ(x)− x = −λ3x4 + 2λ2x2 − x− λ+ 1 .

But both fixed points are roots of this polynomial, so λx2 + x− 1 is a
factor of this polynomial, hence we can factorise f 2

λ(x)− x as

f 2
λ(x)− x = −(λx2 + x− 1)(λ2x2 − λx+ (1− λ)) .

Therefore the points of minimal period 2 are the roots of
λ2x2 − λx+ (1− λ), namely

x±(λ) =
1±
√

4λ− 3

2λ
. [6]

(v) The multiplier for this period-2 orbit is then the product of

f ′λ(x+(λ)) = −2λx+(λ) = −(1 +
√

4λ− 3)

and
f ′λ(x−(λ)) = −2λx−(λ) = −(1−

√
4λ− 3) ,

namely
1− (4λ− 3) = 4− 4λ = 4(1− λ) .

This multiplier decreases from value 1 at λ = λ1 = 3/4 to value −1 at
λ = 5/4. We therefore see that

λ2 = 5/4 . [4]

(vi) A period-doubling bifurcation is the event such as occurs at λ = λ1,
or alternatively at λ = λ2, whereby a formerly stable period-n orbit
loses its stability, and a new stable period-2n orbit is born. [2]

(vii) If we denote by (λn) the sequence of parameter values at which the
period-doubling bifurcations occur, the Feigenbaum constant δ can be
defined by:

δ = lim
n→∞

λn − λn−1
λn+1 − λn

. [3]

c© Queen Mary, University of London (2016) Turn Over



Page 4 MTH6107 / MTH6107P (2016)

Question 2. [26 marks]

(a) Given a subset of R2, how is its box dimension defined? [4]

(b) Briefly describe the construction of the Sierpinski triangle P ∗. Use this
description to show that if the box dimension of P ∗ exists then it must equal
log 3/ log 2. [8]

(c) LetH denote the collection of compact subsets of R2. For A,B ∈ H, how is
the Hausdorff distance h(A,B) defined? [4]

(d) Given a finite collection of self-maps of R2, how is the corresponding
iterated function system defined? [4]

(e) What does it mean for a self-map of R2 to be a contraction mapping? [3]

(f) State the Dubins & Freedman Theorem on iterated function systems
consisting of contraction mappings. [3]

Solution:

(a) For ε > 0 let N(ε) denote the smallest number of squares of side length ε
needed to cover A. The box dimension of A is then

lim
ε→0

logN(ε)

− log ε
,

provided the limit exists. [4]

(b) Begin with a solid equilateral triangle, then sub-divide it into 4 congruent
equilateral triangles, then remove the central triangle, leaving 3 solid
equilateral triangles.

Repeat the above step with each of the remaining 3 triangles, and continue
the process ad infinitum. [4]

Assuming (without loss of generality) that the initial equilateral triangle has
side length 1, we see that N(1/2) = 3, and more generally N(1/2k) = 3k, so
existence of the box dimension D means that

D = lim
ε→0

logN(ε)

− log ε
= lim

k→∞

logN(1/2k)

− log 2−k
= lim

k→∞

log 3k

k log 2
=

log 3

log 2
. [4]

(c) Let d(·, ·) be the usual distance function on R2. For A ∈ H, and x ∈ R2,
define %(x,A) = miny∈A d(x, y).

Then define hBA = maxx∈B %(x,A), and finally set

h(A,B) = max(hAB, hBA) . [4]
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(d) If the self-maps of R2 are φi, for i = 1, . . . , n, then the corresponding
iterated function system is the self-map Φ ofH defined by

Φ(A) = ∪ni=1φi(A)

for all A ∈ H. [4]

(e) φ : R2 → R2 is a contraction mapping if there exists a constant α ∈ [0, 1)
such that

d(φ(z), φ(w)) 6 αd(z, w)

for all w, z ∈ R2, where d is the usual Euclidean distance. [3]

(f) The Dubins-Freedman theorem states that given contraction mappings
φi : R2 → R2, i = 1, . . . , n, the associated iterated function system
Φ : H → H has a unique fixed point. The fixed point is attracting, and its
basin of attraction is the whole ofH. [3]
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Question 3. [25 marks]
Let Σ denote the interval [−1, 1].

(a) Explain what it means for two maps f, g : Σ→ Σ to be topologically
conjugate. [3]

(b) Show that the notion of topological conjugacy defines an equivalence
relation on the set of self-maps of Σ. [4]

(c) Use the map h(x) = sin(πx/2) to show that the map f : Σ→ Σ defined by
f(x) = 1− 2|x| is topologically conjugate to the Ulam map g : Σ→ Σ given
by g(x) = 1− 2x2. [6]

(d) Find the fixed point of the map G : Σ→ Σ defined by G(x) = 1− x2, and
determine, with justification, whether this point is unstable, stable, or
superstable. [4]

(e) Find the periodic orbit of minimal period 2 for G, and determine, with
justification, whether this orbit is unstable, stable, or superstable. [4]

(f) Determine whether the map F : Σ→ Σ given by F (x) = 1− |x| is
topologically conjugate to G, being careful to justify your answer. [4]

Solution:

(a) f and g are topologically conjugate if there exists a homeomorphism
h : Σ→ Σ such that h ◦ f = g ◦ h. [3]

(b) Clearly any f is topologically conjugate to itself: just take h to be the
identity map. [1]

The relation is symmetric: if h ◦ f = g ◦ h then H ◦ g = f ◦H where
H = h−1. [1]

The relation is transitive: if h ◦ f1 = f2 ◦ h and h′ ◦ f2 = f3 ◦ h′, then setting
H = h′ ◦ h we see that

H ◦ f1 = h′ ◦ h ◦ f1 = h′ ◦ f2 ◦ h = f3 ◦ h′ ◦ h = f3 ◦H . [2]

(c) First observe that h : Σ→ Σ defined by h(x) = sin(πx/2) is indeed a
homeomorphism. [1]

We will show that h ◦ f = g ◦ h.

Firstly, if x ∈ [−1, 0] then
h(f(x)) = sin((2x+ 1)π/2) = sin(π/2 + πx) = cos(πx),

and if x ∈ [0, 1] then
h(f(x)) = sin((1− 2x)π/2) = sin(π/2− πx) = cos(πx).

Secondly, g(h(x)) = 1− 2 sin2(πx/2) = cos πx.

So g(h(x)) = h(f(x)), as required. [5]
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(d) The fixed point x∗ satisfies x∗ = 1− x2∗, so equals 1
2
(−1±

√
5). Now

1
2
(−1−

√
5) < −1 so is outside Σ, therefore the required fixed point is

1
2
(−1 +

√
5). [2]

Now G′(x) = −2x, so G′(x∗) = 1−
√

5 < −1, so this fixed point is
unstable. [2]

(e) The orbit of minimal period 2 is {0, 1}. [2]

Since G′(0) = 0 we see that this orbit is superstable. [2]

(f) The two maps are not topologically conjugate. [2]

Justification: Every point in [0, 1] has minimal period 2 under F , whereas G
only has a single orbit of minimal period 2, therefore the maps cannot be
topologically conjugate. [2]

c© Queen Mary, University of London (2016) Turn Over



Page 8 MTH6107 / MTH6107P (2016)

Question 4. [22 marks]
Let σ : [0, 1)→ [0, 1) and τ : [0, 1)→ [0, 1) be defined by σ(x) = 2x (mod 1)
and τ(x) = 3x (mod 1).

(a) Given x ∈ [0, 1), with binary expansion x =
∑∞

k=1 bk/2
k where each

bk ∈ {0, 1}, show that x is periodic under σ if and only if the binary digit
sequence (bk)

∞
k=1 is periodic. [10]

(b) Determine the period-5 orbit of σ which is contained in the interval
[3/20, 13/20]. [3]

(c) Determine the periodic orbit of σ which is contained in the interval
[3/10, 4/5]. [3]

(d) Identify, with justification, those points of minimal period 4 for σ which are
also of minimal period 4 for τ . [6]

Solution:

(a) Applying the doubling map σ corresponds to a (left) shift of the binary digit
sequence, so if

x = .b1b2 . . . bT b1b2 . . . bT . . .

is such that the digit sequence has period T , then σT (x) = x, so x is periodic
under σ. [3]

Conversely, if x is periodic with period T , then x = σT (x) = 2Tx (mod 1),
so x(2T − 1) =: m ∈ {1, 2, . . . , 2T − 2}, therefore

x =
m

2T − 1
=
m

2T
1

1− 2−T
=
m

2T
(
1 + 2−T + 2−2T + 2−3T + . . .

)
. [3]

Now let b1, . . . , bT ∈ {0, 1} be such that

m = b12
T−1 + b22

T−2 + . . .+ bT20

so
m

2T
=
b1
2

+
b2
22

+ . . .+
bT
2T

, [2]

therefore

x =

(
b1
2

+
b2
22

+ . . .+
bT
2T

)(
1 + 2−T + 2−2T + 2−3T + . . .

)
,

in other words
x = .b1b2 . . . bT b1b2 . . . bT . . . ,

so the digit sequence is periodic. [2]

(b) The unique such orbit is {5/31, 10/31, 20/31, 9/31, 18/31}. (Note: To arrive
at this answer probably requires enumerating other period-5 orbits). [3]
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(c) The unique such orbit is {1/3, 2/3}. (Note: To arrive at this answer probably
requires enumerating other periodic orbits). [3]

(d) The points of period 4 for σ are those rationals of the form
m/15 = m/(24 − 1) for m ∈ {0, 1, . . . , 14}, and all of these points except
for 0, 1/3 and 2/3 have minimal period 4.

We deduce there are 3 orbits of minimal period 4, namely

{1/15, 2/15, 4/15, 8/15} ,

{1/5, 2/5, 4/5, 3/5} ,

and
{7/15, 14/15, 13/15, 11/15} .

Under τ , the orbit {1/5, 2/5, 4/5, 3/5} has minimal period 4, because
τ(1/5) = 3/5, τ(3/5) = 4/5, τ(4/5) = 2/5, τ(2/5) = 1/5.

Under τ the points in {1/15, 2/15, 4/15, 8/15} or
{7/15, 14/15, 13/15, 11/15} are pre-periodic but not periodic.

Therefore the set of points of minimal period 4 for σ which are also of
minimal period 4 for τ is precisely {1/5, 2/5, 4/5, 3/5}.

End of Paper.
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