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Question 1. (a) [4 marks] For a map f : Σ → Σ on a non-empty set Σ, what
does it mean to say that x ∈ Σ is a periodic point for f , and how is its minimal
period defined?

(b) [6 marks] Give a detailed statement of Sharkovsky’s Theorem.

(c) [6 marks] Order the integers from 1 to 25 inclusive using Sharkovsky’s ordering.

(d) [4 marks] For the map f : R → R defined by f(x) = (x − 1)(1 − 3x2/2),
determine the orbit of the point 0.

(e) [4 marks] Show that the map f of part (d) above has a point of minimal period
n for every n ∈ N.

Solution:

(a) [4 marks] It means that fn(x) = x for some n ∈ N. Its minimal period is the
smallest natural number N such that fN (x) = x.

(b) [6 marks] Sharkovsky’s ordering ≺ of the natural numbers is given by:

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2m ≺ · · ·
...

· · · ≺ 2k(2n− 1) ≺ · · · ≺ 2k · 7 ≺ 2k · 5 ≺ 2k · 3 ≺ · · ·
...

· · · ≺ 2(2n− 1) ≺ · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ · · ·

· · · ≺ 2n− 1 ≺ · · · ≺ 7 ≺ 5 ≺ 3 .

Sharkovsky’s Theorem then says that if f : R → R is continuous, and has
a periodic orbit of minimal period n, then it has a periodic orbit of minimal
period m for all m ≺ n.

(c) [6 marks]

1 ≺ 2 ≺ 4 ≺ 8 ≺ 16 ≺ 24 ≺ 20 ≺ 12 ≺ 22 ≺ 18 ≺ 14 ≺ 10 ≺ 6 ≺ 25 ≺ 23 ≺
21 ≺ 19 ≺ 17 ≺ 15 ≺ 13 ≺ 11 ≺ 9 ≺ 7 ≺ 5 ≺ 3

(d) [4 marks] It is the period-3 orbit {0,−1, 1}.

(e) [4 marks] The map f is certainly continuous, so the existence of an orbit of
minimal period 3 implies, by Sharkovsky’s Theorem, the existence of points of
minimal period n for all n ∈ N.
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Question 2. Suppose the map f : [0, 1]→ [0, 1] is defined by

f(x) =

{
8x3 if x ∈ [0, 1/2]

2(1− x) if x ∈ (1/2, 1] .

(a) [6 marks] Determine the three fixed points of f .

(b) [6 marks] Compute the multiplier of each fixed point, and use this to determine
whether the point is unstable, stable, or superstable.

(c) [5 marks] For x = 2/5, compute the points f(x), f2(x), and f3(x).

Describe, with justification, the behaviour of fn(x) as n→∞.

Solution:

(a) [6 marks] There are 3 fixed points, at 0 and 1/
√

8 (i.e. the two solutions to
x = 8x3 in [0, 1]), and at 2/3 (i.e. the solution to x = 2(1− x)).

(b) [6 marks] Since

f ′(x) =

{
24x2 if x ∈ [0, 1/2)

−2 if x ∈ (1/2, 1]

we see that:

the multiplier at 0 is f ′(0) = 0, a superstable fixed point;

the multiplier at 1/
√

8 is f ′(1/
√

8) = 3, an unstable fixed point;

the multiplier at 2/3 is −2, an unstable fixed point.

(c) [5 marks] f(x) = 8(2/5)3 = 64/125,

f2(x) = 2(1− 64/125) = 122/125,

f3(x) = 2(1− 122/125) = 6/125.

Now the point f3(x) = 6/125 lies between 0 and 1/
√

8, so is in the basin of
attraction of the fixed point 0, so fn(x)→ 0 as n→∞.
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Question 3. (a) [9 marks] Define what it means for f : R→ R to be

(i) a homeomorphism,

(ii) a diffeomorphism,

(iii) order reversing.

(b) [10 marks] Prove that an order reversing diffeomorphism f : R→ R has exactly
one fixed point.

Solution:

(a) (i) [3 marks] A homeomorphism is a continuous bijection whose inverse map
is also continuous.

(ii) [3 marks] A diffeomorphism is defined (in this module) to be a bijection
such that both f and f−1 are C1 maps, i.e. they are differentiable with
continuous derivative.

(iii) [3 marks] It means that if x < y then f(x) > f(y).

(b) [10 marks] Existence: The fact that f is an order reversing diffeomorphism
means that limx→∞ f(x) = −∞ and limx→−∞ f(x) = +∞. Let Φ(x) = f(x)−
x, so that limx→−∞Φ(x) = +∞ and limx→∞Φ(x) = −∞. By the intermediate
value theorem there exists c ∈ R with Φ(c) = 0, i.e. f(c) = c, so c is a fixed
point.

Uniqueness: Suppose f(c) = c and f(d) = d, with c < d, say. Then

c = f(c) > f(d) = d

since f reverses order; but this inequality contradicts the previous inequality
c < d, so indeed there can be only one fixed point.
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Question 4. Let H denote the collection of compact subsets of R. Let Φ : H → H
be the iterated function system defined by the two maps φ1(x) = x/10 and φ2(x) =
(x+ 3)/10, and let Ck denote Φk([0, 1]) for k ≥ 0.

(a) [5 marks] For A,B ∈ H, how is the Hausdorff distance h(A,B) defined?

(b) [4 marks] Write down the sets C1 and C2.

(c) [5 marks] Compute h(C1, C2).

(d) [3 marks] If Ck is expressed as a disjoint union of Nk closed intervals, compute
the number Nk.

(e) [3 marks] What is the common length of each of the Nk closed intervals whose
disjoint union equals Ck?

(f) [5 marks] Given a set A ⊂ R, how is its box dimension defined?

(g) [5 marks] Using your answers to parts (d) and (e), or otherwise, show that if
the box dimension of C = ∩∞k=0Ck exists then it must equal log 2/ log 10.

(h) [5 marks] Give a description of the members of C in terms of the digits of their
decimal expansion.

(i) [5 marks] If f : C → C is defined by f(x) = 10x (mod 1) then find a point
x ∈ C which has minimal period 3 under f .

Solution:

(a) [5 marks] Let d(·, ·) be the usual distance function on R. For A ∈ H, and
x ∈ R, define %(x,A) = miny∈A d(x, y).

Then define hBA = maxx∈B %(x,A), and finally set

h(A,B) = max(hAB, hBA) .

(b) [4 marks] C1 = [0, 1/10] ∪ [3/10, 4/10], and

C2 = [0, 1/100] ∪ [3/100, 4/100] ∪ [3/10, 31/100] ∪ [33/100, 34/100].

(c) [5 marks] If A = C1, B = C2 then hBA = 0 since B ⊂ A, whilst

hAB = max
x∈C1

%(x,C2) = %(1/10, C2) = %(1/10, 4/100) = 6/100 = 3/50 ,

so
h(C1, C2) = max(3/50, 0) = 3/50 .

(d) [3 marks] Nk = 2k because N0 = 1 and the recursive procedure doubles the
number of intervals at each step.

(e) [3 marks] The length is 1/10k, because the length of the closed intervals de-
creases by a factor of 10 at each step, and the length of C0 = [0, 1] is 1.
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(f) [5 marks] For ε > 0 let N(ε) denote the smallest number of length-ε intervals
needed to cover A. The box dimension of A is then

lim
ε→0

logN(ε)

− log ε
,

provided the limit exists.

(g) [5 marks] If εk = 1/10k then N(εk) = 2k, by parts (d) and (e), and so the box
dimension equals

lim
k→∞

logN(εk)

− log εk
= lim

k→∞

k log 2

k log 10
=

log 2

log 10
.

(h) [5 marks] C consists of those numbers between 0 and 1 which have a decimal
expansion whose digits all equal either 0 or 3.

(i) [5 marks] There are six such points, namely

1/333 = 0.003003003 . . . , 10/333 = 0.030030030 . . . , 100/333 = 0.300300300 . . .

11/333 = 0.033033033 . . . , 101/333 = 0.303303303 . . . , 110/333 = 0.330330330 . . .

End of Paper.
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