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Question 1 (a) Suppose we are given a non-empty set Σ and a map f : Σ→ Σ.

(i) [1 mark] What does it mean to say that x ∈ Σ is a fixed point for f?

(ii) [2 marks] What does it mean to say that x ∈ Σ is a periodic point for f?

(iii) [1 mark] How is the minimal period of a periodic point defined?

(iv) [2 marks] What does it mean to say that x ∈ Σ is an eventually periodic
point for f?

(v) [6 marks] Prove that if f is invertible then every eventually periodic point
is a periodic point.

(b) [5 marks] Give a detailed statement of Sharkovsky’s Theorem.

(c) Suppose the map f : [0, 1]→ [0, 1] is defined by

f(x) =

{
x+ 1/2 for x ∈ [0, 1/2)

2− 2x for x ∈ [1/2, 1] .

(i) [3 marks] For this map f , determine all its fixed points.

(ii) [4 marks] For this map f , determine an eventually periodic point which
is not periodic.

(iii) [4 marks] For this map f , determine all its points of minimal period 2.

Solution:

(a) (i) [1 mark] It means that f(x) = x.

(ii) [2 marks] It means that fn(x) = x for some n ∈ N.

(iii) [1 mark] It is the smallest natural number n such that fn(x) = x.

(iv) [2 marks] It means that for some m ≥ 0, the point fm(x) is a periodic
point.

(v) [6 marks] Suppose that x is eventually periodic, so there exists m ≥ 0 such
that fm(x) is a period-n point for some n ≥ 1, i.e. fn(fm(x)) = fm(x).
In other words, fm(fn(x)) = fm(x). But invertibility allows us to apply
f−m = (f−1)m to both sides of this equality, giving fn(x) = x, so in fact
x is periodic.

(b) [5 marks] Sharkovsky’s ordering ≺ of the natural numbers is given by:

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2m ≺ · · ·
...

· · · ≺ 2k(2n− 1) ≺ · · · ≺ 2k · 7 ≺ 2k · 5 ≺ 2k · 3 ≺ · · ·
...

· · · ≺ 2(2n− 1) ≺ · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ · · ·
· · · ≺ 2n− 1 ≺ · · · ≺ 7 ≺ 5 ≺ 3 .

Sharkovsky’s Theorem then says that if f : R → R is continuous, and has
a periodic orbit of minimal period n, then it has a periodic orbit of minimal
period m for all m ≺ n.
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(c) (i) [3 marks] The only fixed point is x = 2/3.

(ii) [4 marks] The point x = 1/6 is a pre-fixed (hence pre-periodic) point: to
see this note that f(1/6) = 1/6 + 1/2 = 2/3, which is the fixed point.

(iii) [4 marks] The points 1/3 and 5/6 are the only points of minimal period
2. To find these points, note that if x ∈ [0, 1/2) has period 2 then f(x) =
x+ 1/2 must lie in [1/2, 1], so

x = f2(x) = f(x+ 1/2) = 2− 2(x+ 1/2) = 1− 2x ,

so x = 1/3; then f(1/3) = 1/3 + 1/2 = 5/6.

c© Queen Mary, University of London (2014) TURN OVER



Page 4 MTH6107 (2014)

Question 2 (a) [2 marks] For a differentiable map f : R → R, how is the multi-
plier of a periodic orbit defined?

(b) [2 marks] Write down a condition on the multiplier which guarantees that a
periodic orbit is stable (i.e. attractive).

(c) Let fλ : [−1, 1] → [−1, 1] be the logistic map, defined by fλ(x) = 1 − λx2 for
parameters λ ∈ [0, 2].

(i) [3 marks] For λ ∈ [0, 2), compute the fixed point x∗ = x∗(λ) ∈ [−1, 1] of
fλ.

(ii) [3 marks] Compute the multiplier of this fixed point x∗(λ).

(iii) [2 marks] Determine the largest value λ1 with the property that the fixed
point x∗(λ) is stable for all λ ∈ [0, λ1).

(iv) [6 marks] For λ > λ1, determine the periodic orbit of fλ which has minimal
period 2.

(v) [4 marks] Compute the multiplier of this period-2 orbit, and determine
the largest value λ2 with the property that this orbit is stable for all
λ ∈ (λ1, λ2).

(vi) [2 marks] Briefly define what is meant by a period-doubling bifurcation.

(vii) [3 marks] How is the Feigenbaum constant δ defined?

Solution:

(a) [2 marks] If the orbit is generated by the point x, of minimal period n, the
multiplier is defined to be (fn)′(x). An alternative expression (courtesy of the
chain rule) is

∏n−1
i=0 f

′(f ix).

(b) [2 marks] If the multiplier is strictly smaller than 1 in absolute value then the
orbit is stable.

(c) (i) [3 marks] Fixed points of fλ satisfy λx2 + x− 1 = 0, so x = −1±
√
1+4λ

2λ , of
which only

x∗(λ) =
−1 +

√
1 + 4λ

2λ

belongs to [−1, 1] when λ ∈ [0, 2).

(ii) [3 marks] The multiplier is

f ′λ(x∗(λ)) = −2λx∗(λ) = 1−
√

1 + 4λ .

(iii) [2 marks] λ1 = 3/4. This is because the multiplier is a strictly decreasing
function of λ, decreasing from value 0 at λ = 0 to value −1 at λ = 3/4.

(iv) [6 marks] The period-2 points satisfy f2λ(x)− x = 0. But

f2λ(x) = 1− λ(1− λx2)2 = −λ3x4 + 2λ2x2 − λ+ 1 ,

so
f2λ(x)− x = −λ3x4 + 2λ2x2 − x− λ+ 1 .
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But both fixed points are roots of this polynomial, so λx2 + x − 1 is a
factor of this polynomial, hence we can factorise f2λ(x)− x as

f2λ(x)− x = −(λx2 + x− 1)(λ2x2 − λx+ (1− λ)) .

Therefore the points of minimal period 2 are the roots of λ2x2 − λx +
(1− λ), namely

x±(λ) =
1±
√

4λ− 3

2λ
.

(v) [4 marks] The multiplier for this period-2 orbit is then the product of

f ′λ(x+(λ)) = −2λx+(λ) = −(1 +
√

4λ− 3)

and
f ′λ(x−(λ)) = −2λx−(λ) = −(1−

√
4λ− 3) ,

namely
1− (4λ− 3) = 4− 4λ = 4(1− λ) .

This multiplier decreases from value 1 at λ = λ1 = 3/4 to value −1 at
λ = 5/4. We therefore see that

λ2 = 5/4 .

(vi) [2 marks] A period-doubling bifurcation is the event such as occurs at
λ = λ1, or alternatively at λ = λ2, whereby a formerly stable period-n
orbit loses its stability, and a new stable period-2n orbit is born.

(vii) [3 marks] If we denote by (λn) the sequence of parameter values at which
the period-doubling bifurcations occur, the Feigenbaum constant δ can be
defined by:

δ = lim
n→∞

λn − λn−1
λn+1 − λn

.
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Question 3 (a) [6 marks] Define what it means for f : R→ R to be

(i) a homeomorphism,

(ii) a diffeomorphism,

(iii) order preserving.

(b) [7 marks] Prove that an order preserving map f : R → R does not have any
points of minimal period strictly larger than 1.

Solution:

(a) (i) [2 marks] A homeomorphism is a continuous bijection whose inverse map
is also continuous.

(ii) [2 marks] A diffeomorphism is defined (in this module) to be a bijection
such that both f and f−1 are C1 maps, i.e. they are differentiable with
continuous derivative.

(iii) [2 marks] It means that if x < y then f(x) < f(y).

(b) [7 marks] Suppose, in order to derive a contradiction, that x is periodic of
minimal period n > 1. In particular, f(x) 6= x, so we can consider two cases:
either x < f(x) or f(x) < x.

If x < f(x) then f(x) < f(f(x)) = f2(x) because f is order preserving, and
repeating this argument we see that f i(x) < f i+1(x) for all i ≥ 0. Thus in
particular x < fn(x), so x 6= fn(x), contradicting the supposition that x is
n-periodic.

If on the other hand f(x) < x then f2(x) = f(f(x)) < f(x) because f is
order preserving, and repeating this argument we see that f i+1(x) < f i(x)
for all i ≥ 0. Thus in particular fn(x) < x, so x 6= fn(x), contradicting the
supposition that x is n-periodic.
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Question 4 (a) [4 marks] Let C0 = [0, 1]. In the standard construction of the
Cantor ternary set C = ∩∞k=0Ck, describe briefly how the sets Ck are defined.

(b) [2 marks] Write down the sets C1 and C2.

(c) [2 marks] If Ck is expressed as a disjoint union of Nk closed intervals, compute
the number Nk.

(d) [2 marks] What is the common length of each of the Nk closed intervals whose
disjoint union equals Ck?

(e) [4 marks] Given a set A ⊂ R, how is its box dimension defined?

(f) [4 marks] Let H denote the collection of compact subsets of R. For A,B ∈ H,
how is the Hausdorff distance h(A,B) defined?

(g) [4 marks] Compute h(C1, C2).

(h) [4 marks] Using your answers to parts (c) and (d), or otherwise, show that if
the box dimension of the ternary Cantor set C ⊂ R exists then it must equal
log 2/ log 3.

(i) [3 marks] Given two maps φ1 : R→ R and φ2 : R→ R, how is the correspond-
ing iterated function system Φ : H → H defined?

(j) [3 marks] Write down two maps φ1 : R → R and φ2 : R → R such that the
ternary Cantor set C is the fixed point of the corresponding iterated function
system Φ.

Solution:

(a) [4 marks] The set Ck−1 is a disjoint union ∪iIi of closed intervals. If from each
of these closed intervals Ii we remove the ‘open middle third’, we are left with
a pair of closed intervals I−i and I+i , each of length a third the length of I. The
union ∪i(I−i ∪ I

+
i ) of these intervals is then defined to be the set Ck.

(b) [2 marks] C1 = [0, 1/3] ∪ [2/3, 1], and

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

(c) [2 marks] Nk = 2k because N0 = 1 and the recursive procedure doubles the
number of intervals at each step.

(d) [2 marks] The length is 1/3k, because the length of the closed intervals decreases
by a factor of 3 at each step, and the length of C0 = [0, 1] is 1.

(e) [4 marks] For ε > 0 let N(ε) denote the smallest number of length-ε intervals
needed to cover A. The box dimension of A is then

lim
ε→0

logN(ε)

− log ε
,

provided the limit exists.
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(f) [4 marks] Let d(·, ·) be the usual distance function on R. For A ∈ H, and
x ∈ R, define %(x,A) = miny∈A d(x, y).

Then define hBA = maxx∈B %(x,A), and finally set

h(A,B) = max(hAB, hBA) .

(g) [4 marks] If A = C1, B = C2 then hBA = 0 since B ⊂ A, whilst

hAB = max
x∈C1

%(x,C2) = %(1/6, C2) = 1/6− 1/9 = 1/18 ,

so
h(C1, C2) = max(1/18, 0) = 1/18 .

(h) [4 marks] If εk = 1/3k then N(εk) = 2k, by parts (c) and (d), and so the box
dimension equals

lim
k→∞

logN(εk)

− log εk
= lim

k→∞

k log 2

k log 3
=

log 2

log 3
.

(i) [3 marks] It is defined by Φ(A) = ∪2i=1φi(A) for all A ∈ H.

(j) [3 marks] We may take φ1(x) = x/3 and φ2(x) = (x+ 2)/3.

End of Paper
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