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Sylow’s Theorem 1
Theorem: Suppose G is a finite group and p is a prime. Then G has at least one
Sylow p-subgroup.



Examples

Let G = U9 = {1, 2, 4, 5, 7, 8}, and p = 3. G is small enough that we can easily find a
subgroup of order 3, but let’s follow the proof of Sylow’s Theorem 1.



Classification of p-Groups
Notation: Suppose G a finite group. Let Sylp(G ) denote the set of Sylow p-subgroups
of G , and let npG denote the number of Sylow p-subgroups of G .



Classification of p-Groups
Take G = D10. Then a Sylow 5-subgroup is a subgroup of order 5.
One such subgroup is 〈r〉. In fact, this is the only example: the elements of D10 \ 〈r〉
all have order 2, so cannot be contained in a subgroup of order 5. So a subgroup of
order 5 is contained in 〈r〉, so must be 〈r〉. So n2(D10) = 1.
As a special case: if P is the only Sylow p-subgroup of G , then P E G .



Classification of p-Groups

Proposition 7.9

Suppose G is a finite group and P,Q ∈ SylpG with gQg−1 = Q for every g ∈ P.
Then P = Q.



Classification of p-Groups

Sylow’s Theorem 2, 7.10

Suppose G is a finite group and p is a prime. Then all the Sylow p-subgroups of G are
conjugate.



Sylow’s Theorems

Sylow’s Theorem 3, 7.11

Suppose G is a finite group, and p is a prime, and write |G | = pab, where p - b. Then
np(G ) ≡ 1 mod p, and np(G ) | b.



Sylow’s Theorems

Remark

Sylow’s Theorem 2 shows that if P ∈ Sylp(G ) and P E G , then P is the only Sylow
p-subgroup of G (because any other Sylow p-subgroup would have to be conjugate to
P). In particular, if G is abelian, then (since all subgroups of an abelian group are
normal) G has a unique Sylow p-subgroup.



Sylow’s Theorems

Example

We can show that C15 is the only group of order 15 up to isomorphism.
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Sylow’s Theorems

Examples:

Suppose G is a group of order 20; then we claim that G cannot be simple.



Sylow’s Theorems

Example: For a more complicated example, suppose G is a group of order 12; again
we claim that G cannot be simple.
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Some Useful Notations

Throughout this course, we use the following notation.

Cn denotes the cyclic group of order n.

Klein group often symbolized by the letter V4 or as K4 = Z4 × Z4 denotes the
group {1, a, b, c}, with group operation given by

a2 = b2 = c2 = 1, ab = ba = c , ac = ca = b, bc = cb = a.

Un is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.



Some Useful Notations

D2n is the group with 2n elements

1, r , r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

The group operation is determined by the relations rn = s2 = 1 and
sr = rn−1s.

Sn denotes the group of all permutations of {1, . . . , n}, with the group
operation being composition.

GLn(R) is the group of n × n invertible matrices with entries in R, with the
group operation being matrix multiplication.

Q8 is the group {1,−1, i ,−i , j ,−j , k,−k}, in which

i2 = j2 = k2 = −1, ij = k , jk = i , ki = j , ji = −k, kj = −i , ik = −j .
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