

Group Theory

Week 12, Lecture 1, 2&3

Dr Lubna Shaheen

Table of Contents

- **2** Sylow's Theorems 2
- **3** Sylow's Theorems 3
- **4** Exams Style Questions

Theorem: Suppose G is a finite group and p is a prime. Then G has at least one Sylow p-subgroup.

Examples

Let $G = U_9 = \{1, 2, 4, 5, 7, 8\}$, and p = 3. G is small enough that we can easily find a subgroup of order 3, but let's follow the proof of Sylow's Theorem 1.

Notation: Suppose G a finite group. Let $Syl_p(G)$ denote the set of Sylow *p*-subgroups of G, and let n_pG denote the number of Sylow *p*-subgroups of G.

Take $G = \mathcal{D}_{10}$. Then a Sylow 5-subgroup is a subgroup of order 5. One such subgroup is $\langle r \rangle$. In fact, this is the only example: the elements of $\mathcal{D}_{10} \setminus \langle r \rangle$ all have order 2, so cannot be contained in a subgroup of order 5. So a subgroup of order 5 is contained in $\langle r \rangle$, so must be $\langle r \rangle$. So $n_2(\mathcal{D}_{10}) = 1$. As a special case: if P is the only Sylow p-subgroup of G, then $P \triangleleft G$.

Proposition 7.9

Suppose G is a finite group and $P, Q \in Syl_pG$ with $gQg^{-1} = Q$ for every $g \in P$. Then P = Q.

Sylow's Theorem 2, 7.10

Suppose G is a finite group and p is a prime. Then all the Sylow p-subgroups of G are conjugate.

Sylow's Theorem 3, 7.11

Suppose G is a finite group, and p is a prime, and write $|G| = p^a b$, where $p \nmid b$. Then $n_p(G) \equiv 1 \mod p$, and $n_p(G) \mid b$.

Remark

Sylow's Theorem 2 shows that if $P \in Syl_p(G)$ and $P \trianglelefteq G$, then P is the only Sylow p-subgroup of G (because any other Sylow p-subgroup would have to be conjugate to P). In particular, if G is abelian, then (since all subgroups of an abelian group are normal) G has a unique Sylow p-subgroup.

Example

We can show that \mathcal{C}_{15} is the only group of order 15 up to isomorphism.

Examples:

Suppose G is a group of order 20; then we claim that G cannot be simple.

Example: For a more complicated example, suppose G is a group of order 12; again we claim that G cannot be simple.

Exams Style Questions

Exams Style Questions

QMplus Quiz

Week-11 & Week 12 QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1,-1,i,-i,j,-j,k,-k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.