

Dr Lubna Shaheen

U.G

10:00 - 1:00

10:00-12:30 pm

Final Exam

January

Table of Contents

p-Groups

2 Simple *p*- groups and composition series

p-subgroups

4 Exams Style Questions

NO. Sr Final Exams papers of 2023 f 2024 will be discussed in Next week Lecture & Tutowa Time. *p*-Groups

Definition: A *p*-group is a group whose order is a power of *p*.

for example, pa.

Example: i) The cyclic group Cpi is a p-group for any r. ii) $V_4 = \{1, a, b, ab = c\}$ is a 2-group.

Examples iii) $D_8 = D_2 \lambda$ is a 2-group for any \mathcal{X} . Dio, Die are not 2-group

Lemma

Suppose G is a p-group and $G \neq \{e\}$. Then $Z(G) \neq \{e\}$.

Solution: Suppose G is a p-group. $|G| = p^n, n > 0$

by the class equation $|G| = \frac{|Z(G)| + \frac{|G|}{z(a_i)} + \dots + \frac{|G|}{z(a_b)}}{z(a_b)}$ Z(ab)

Recall

 $p^{n} = |G| = [G: Z(a_{i})] |Z(a_{i})|$ $\frac{|G|}{|Z|^{(ai)}|} = [G:Z|^{(ai)}] \text{ order of } \overline{uo}$ $|Z|^{(ai)}| \qquad \text{ conjugacy class of } a_i.$ $p^{n} = |Z(G)| + p^{n} + \cdots + p^{n}$ p/12(G) \$0 12(G)/71

Lemma

Suppose G is a group of order p. Then $G \cong C_p$.

Phoof: g= in Gr, take g has order p. so <g> is a subgroup of Gr of order p, so $G = 197 \cong Cp$ $G_{1} = \langle g_{7} = C_{p} = \frac{2}{3} l_{1} g_{1} g_{2}^{2}, \dots, g_{p} \rho^{-1} \xi$

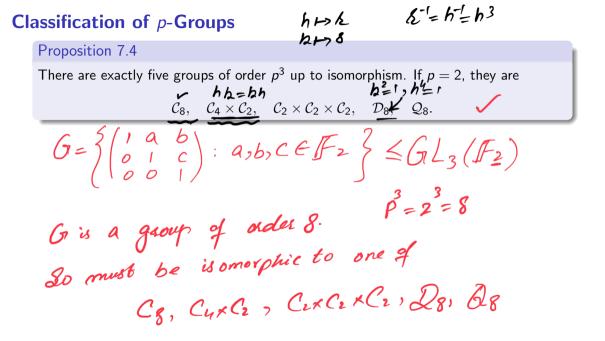
Proposition

Suppose G is a group of order p^2 . Then G is isomorphic to C_{p^2} or $C_p \times C_p$.

Solution: The order of any element of G is $1, p, \alpha p^2$. If there is an element h of order p² Then G= 297 = Co2 Suppose there is no element of order p²

=> every element other than I is of order p. Now, we can find an element h=1 EZ(G). H=<h7, Then H is mormal subgroup of Gr of order p. bEGH & K=, Then H<HK ≤ Gr, but Then by Lagranges GI=HK Jhearem

 $G = \frac{2}{h} \frac{h}{h} | o \leq i, j < p_{j}^{2}$ with ond (h) = ond(b) = P l hh=hh One can define an isomorphism G -> Cp x CP $h'h' \mapsto (z', z')$



Classification of p-Groups (Jis non-abelian H cannot be isomorphic to Cg $= \begin{pmatrix} 0 & 0 \\$ Homust have an demont of order 4. F-WB-AJ $h = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (CAMPUS-M)

 $H = \langle h \rangle = \begin{cases} (100) \\ 010 \\ 001 \\$ $k = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ REGIH

 $Id = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} | \begin{array}{c} h_{10} \\ \overline{h}_{0} \\ \overline{h}_$ $h \mapsto k, \quad k \mapsto \mathscr{S}$ $G \cong C_4 \times C_2$ $h = h h_{2,1}$

Example

Let

$$G = \begin{cases} (a & b) \\ (a & 1 & c \\ 0 & 0 & 1 \end{cases} : (a, b, c \in \mathbb{F})$$

Then G s a group of order 8, so must be isomorphic to one of the groups in previous Proposition 7.4. Let's follow the proof above to find out which one.

and cannot be isomorphic to Cg as ils mon-abelian. Not isomorphic to CyxC2 as hith hhth Not isomorphic to Qg Questernion as high

Simple *p*- groups and composition series

Proposition 7.5

Suppose G is a p-group and $G \neq \{e\}$. Then G has a normal subgroup of order p. Hence the only simple p-group is C_p .

 $h \neq i \in Z(G)$ Solution: Ord(h) is a power of P > h. has order P a Subproup of order P. EZ(6)

Simple *p*- groups and composition series

Corollary 7.6

Suppose G is a group and $|G| = p^n$. Then the composition factors of G are C_p, \ldots, C_p (n- copies).

DGr G. Ur-1 a Cp

p-subgroups

 $|G| = \rho^{a}b$ D Xb

Definition

Suppose G is a finite group and p is a prime, and write the order of G as $\underline{p}^a b$, where p does not divide b. A Sylow p-subgroup of G is a subgroup of order p^a .

 $|G_{1}| = (2)^{2} \times 5^{2}$ Examples: GI = CIM ∠g²⁵ > is a sylow <u>2</u>- subgroup $\langle q^{25} \gamma = \begin{cases} 1, q^{25}, q^{50}, q^{75} \\ 1, q^{7}, q^{7}, q^{7} \end{cases}$ $1 q^{25} = 4 = 2^{2}$ $\chi g' = \{1, g', g^{s}, g'^{2}, \dots, \}$ $\chi g^{s} = \{1, g', g^{s}, g'^{2}, \dots, \}$

Examples: $G_{1} = Z_{3}$ $|G| = 2 \times 3$ $S_{3} = Z_{2} e_{1} (12), (13), (23), (123), (132)$ $H = Z_{1}(12), e_{Z}^{2}$ is a sylow 2-subgroup. *p*-subgroups $K = \{(13), e\}$ 11 11 11 IT (1 $H' = \{(23), e\}$

 $\binom{123}{231}\binom{123}{231} = \binom{123}{312} = (132)$

 $G = Q_{12}$

|G₁|=2²×<u>3</u>

 $\langle h \rangle = \{1, k, k^2, k^3, k^4, k^5\}$ *p*-subgroups $\langle h^2 \rangle \leq \langle h \rangle$ $\langle h^2 \rangle = \frac{2}{2} (h^2, h^4)^2$ $\langle h^2 \rangle$ is a sylow 3-Subgroup of $\langle h^2 \rangle$ is a sylow 3-Subgroup of \square $\langle k^2, 8 \rangle = \frac{2}{2} l, 8, k^2 S, k^9 S \right\}$ is a Sylow 2-Subgroup of R_{12}

p-subgroups

Sylow's Theorem 1: Suppose G is a finite group, and p is a prime. Then G has at least one Sylow p-Subgroup.

Example: $G_{T} = U_{q} = \{1, 2, 4, 5, 7, 8\}$ P=3

p-subgroups $\underline{Proof}: |G| = p^{9}b, \text{ where } p Yb.$ Proof: $|G_1| = \rho^{\alpha}b_{\gamma}$ where ρ_{Yb} . Net X be the set of all subsets of G of some P^{α} X = $\begin{cases} |X_1|_{\gamma}|X_2|_{\gamma} & \dots & X_{p} \\ |P^{\alpha}|_{p^{\alpha}} \\ P^{\alpha} \\$

=> ture must be an orbit Y of T & Teat 1/1 is not dovisible by p. S= 3 81,... \$pa } EY P= Stab (S) $P \leq G$, |Y||P| = |G| = P'bIPI≤Pª Since |Y| is not duisible by p => 1Pl is alousible $|P| = P^{a}$ P is a Sylow p-Subgroup.

Example: $G_{T} = U_{q} = \frac{2}{3} 1, 2, 4, 5, 7, 8 \neq P=3$ Let X be the set of 3-Subsets of $2l_q$ $\{a,b,c\}$ abc $|X| = {6 \choose 3} = \frac{6!}{3!3!} = \frac{76\times5\times4\times3!}{3!\times3\times7} = 20$ 20 which is not deveble by 3. $X = \begin{cases} 124, 248, 478, 125, 178, 125, ... \end{cases}$ $Ohb(124) = \begin{cases} 124, 248, 487, 517, 578, 125 \\ 0hb(248) = \begin{cases} 248, 248, 487, 517, 578, 125 \\ 248, 248, 258 \end{cases}$ not dovosable by 3

Y= 3147,2582 H= 3147 } Stab (H) = P P={1,4,7} 8low 3-Subgroup

Composition Series

Jorda-Holder Theorem

Suppose G is a group, and that G has two composition series

 $G_0 \lhd G_1 \lhd \cdots \lhd G_r$ and $H_0 \lhd H_1 \lhd \cdots \lhd H_s \lhd \{1\}.$

Then r = s and the groups

$$rac{G_0}{G_1},\ldots,rac{G_{r-1}}{G_r}$$

are isomorphic to the groups

$$\frac{H_0}{H_1},\ldots,\frac{H_{r-1}}{H_r}$$

in some order.

YI-LO-OS (CAMPUS-M)

Definition: Gius a finite group. Let Syl, (G) denote The set of Sylow P- Subgroups of Gr & let np(G) alenote the no of Sylow's P- Subgroups of Gr.

Composition Series

Tutorial - Session.

we are covering past

Exams papers 2023-2024

dusing Tutosial Times.

Exams Style Questions

QMplus Quiz

These woll be no Quij This week, we ll be discussing Exam Style Questions in Tutowals.

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1,-1,i,-i,j,-j,k,-k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.