Group Theory Week 11, Lecture 1, 2 & 3 Dr Lubna Shaheen #### **Table of Contents** - ① p-Groups - 2 Simple *p* groups and composition series - p-subgroups - **4** Exams Style Questions ### *p*-Groups **Definition**: A *p*-group is a group whose order is a power of *p*. ## **Examples** Lemma Suppose G is a p-group and $G \neq \{e\}$. Then $Z(G) \neq \{e\}$. Lemma Suppose G is a group of order p. Then $G\cong \mathcal{C}_p$. #### Proposition Suppose G is a group of order p^2 . Then G is isomorphic to \mathcal{C}_{p^2} or $\mathcal{C}_p \times \mathcal{C}_p$. #### Proposition 7.4 There are exactly five groups of order p^3 up to isomorphism. If p=2, they are $$\mathcal{C}_8, \quad \mathcal{C}_4 \times \mathcal{C}_2, \quad \mathcal{C}_2 \times \mathcal{C}_2 \times \mathcal{C}_2, \quad \mathcal{D}_8, \quad \mathcal{Q}_8.$$ #### **Example** Let G = Then G s a group of order 8, so must be isomorphic to one of the groups in previous Proposition 7.4. Let's follow the proof above to find out which one. ## Simple *p*- groups and composition series #### Proposition 7.5 Suppose G is a p-group and $G \neq \{e\}$. Then G has a normal subgroup of order p. Hence the only simple p-group is C_p . ## Simple p- groups and composition series #### Corollary 7.6 Suppose G is a group and $|G| = p^n$. Then the composition factors of G are $\mathcal{C}_p, \ldots, \mathcal{C}_p$ (n- copies). #### *p*-subgroups #### Definition Suppose G is a finite group and p is a prime, and write the order of G as $p^a b$, where p does not divide b. A Sylow p-subgroup of G is a subgroup of order p^a . # *p*-subgroups Examples: # *p*-subgroups Examples: ### **Composition Series** #### Jorda-Holder Theorem Suppose G is a group, and that G has two composition series $$G_0 \vartriangleleft G_1 \vartriangleleft \cdots \vartriangleleft G_r$$ and $H_0 \vartriangleleft H_1 \vartriangleleft \cdots \vartriangleleft H_s \vartriangleleft \{1\}.$ Then r = s and the groups $$\frac{G_0}{G_1},\ldots,\frac{G_{r-1}}{G_r}$$ are isomorphic to the groups $$\frac{H_0}{H_1},\ldots,\frac{H_{r-1}}{H_r}$$ in some order. # **Composition Series** # **Composition Series** **Example:** 0 ## **Exams Style Questions** ## **Exams Style Questions** # **QMplus Quiz** #### **Some Useful Notations** Throughout this course, we use the following notation. - C_n denotes the cyclic group of order n. - Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by $$a^2 = b^2 = c^2 = 1$$, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$. • U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n. #### Some Useful Notations • \mathcal{D}_{2n} is the group with 2n elements 1, $$r$$, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$. The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$. - S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition. - $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication. - Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which $$i^2 = j^2 = k^2 = -1$$, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.