

Group Theory

Week 11, Lecture 1, 2 & 3

Dr Lubna Shaheen

Table of Contents

- ① p-Groups
- 2 Simple *p* groups and composition series
- p-subgroups
- **4** Exams Style Questions

p-Groups

Definition: A *p*-group is a group whose order is a power of *p*.

Examples

Lemma

Suppose G is a p-group and $G \neq \{e\}$. Then $Z(G) \neq \{e\}$.

Lemma

Suppose G is a group of order p. Then $G\cong \mathcal{C}_p$.

Proposition

Suppose G is a group of order p^2 . Then G is isomorphic to \mathcal{C}_{p^2} or $\mathcal{C}_p \times \mathcal{C}_p$.

Proposition 7.4

There are exactly five groups of order p^3 up to isomorphism. If p=2, they are

$$\mathcal{C}_8, \quad \mathcal{C}_4 \times \mathcal{C}_2, \quad \mathcal{C}_2 \times \mathcal{C}_2 \times \mathcal{C}_2, \quad \mathcal{D}_8, \quad \mathcal{Q}_8.$$

Example

Let

G =

Then G s a group of order 8, so must be isomorphic to one of the groups in previous Proposition 7.4. Let's follow the proof above to find out which one.

Simple *p*- groups and composition series

Proposition 7.5

Suppose G is a p-group and $G \neq \{e\}$. Then G has a normal subgroup of order p. Hence the only simple p-group is C_p .

Simple p- groups and composition series

Corollary 7.6

Suppose G is a group and $|G| = p^n$. Then the composition factors of G are $\mathcal{C}_p, \ldots, \mathcal{C}_p$ (n- copies).

p-subgroups

Definition

Suppose G is a finite group and p is a prime, and write the order of G as $p^a b$, where p does not divide b. A Sylow p-subgroup of G is a subgroup of order p^a .

p-subgroups Examples:

p-subgroups Examples:

Composition Series

Jorda-Holder Theorem

Suppose G is a group, and that G has two composition series

$$G_0 \vartriangleleft G_1 \vartriangleleft \cdots \vartriangleleft G_r$$
 and $H_0 \vartriangleleft H_1 \vartriangleleft \cdots \vartriangleleft H_s \vartriangleleft \{1\}.$

Then r = s and the groups

$$\frac{G_0}{G_1},\ldots,\frac{G_{r-1}}{G_r}$$

are isomorphic to the groups

$$\frac{H_0}{H_1},\ldots,\frac{H_{r-1}}{H_r}$$

in some order.

Composition Series

Composition Series

Example:

0

Exams Style Questions

Exams Style Questions

QMplus Quiz

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r$$
, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.