
Main Examination period 2024 – January – Semester A

MTH6106: Group Theory

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period
of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the
questions.

All work should be handwritten and should include your student number. Only
one attempt is allowed – once you have submitted your work, it is final.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your working for any
calculations you do.

• You may use the Internet as a resource, but not to ask for the solution to an exam
question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

Examiners: I.D. Morris, F. Rincón
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Question 1 [25 marks].

(a) For the following, either give an example or explain why no example can exist:

(i) A group with at least four elements in which every element has order either 1
or 2. [2]

[Seen similar.] The Klein group V4 ' C2 × C2 is the example most likely to be
familiar to students.

(ii) A group with at least four elements in which every element has order either 1
or 4. [2]

[Unseen.] If G is such a group, and g ∈ G is an element of order 4, then g2

has order 2, so this is impossible.

(iii) Two groups of order 24 which are not isomorphic to one another. [2]

[Seen similar.] An easy example is S4 and C24, which are not isomorphic
because the latter is abelian and the former is not.

(iv) Two countably infinite groups which are not isomorphic to each other. [2]

[Unseen.] The additive group of rationals and the multiplicative group of
nonzero rationals are both examples. (One has an element of order 2 and the
other does not.) Alternatives could include Z and Q, since the former is
finitely generated and the latter is not.

(b) Let G = {x ∈ R : x ≥ 0} and define a binary operation ◦ on G by x ◦ y := |x− y|.
Decide which of the four group axioms is satisfied by (G, ◦) and which is not. For
each axiom, give a brief justification for your answer. [5]

[Unseen.] This clearly satisfies the closure axiom (students might call this “G1”)
since if x and y are non-negative reals then so is |x− y|. (1 mark.) It does not
satisfy associativity (“G2”) since for example ||2− 1| − 1| = 0 6= 2 = |2− |1− 1||.
(2 marks.) The identity axiom G3 is satisfied since |x− 0| = |0− x| = |x| = x for
every x ∈ G (1 mark) and the inverse axiom G4 is satisfied since |x− x| = 0 for
every x ∈ G (1 mark).

(c) Using Lagrange’s theorem, or otherwise, show that if g is an element of a group G
such that |G| = n, then gn is the identity element of G. [3]

[Unseen.] The order of g equals the order of the the group generated by g, which
must divide n by Lagrange’s theorem, so gk = 1 for some k which divides g.
Hence gk(n/k) = 1 as needed. (3 marks)

(d) Using the result of (c) above, show that if p is a prime number and n is an integer
in the range 1 ≤ n ≤ p, then np−1 ≡ 1 mod p. (Hint: consider the group Up.) [3]

[Unseen.] Since p is prime, n is coprime to p, hence is an element of Up (1 mark).
The number of elements in Up is p− 1 (1 mark) so we have np−1 ≡ 1 by the
previous result (1 mark).

(e) List all subgroups of the dihedral group D10 and indicate briefly why your list is
complete. [6]
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[Unseen.] Subgroups must have order 1, 2, 5 or 10, and the subgroups with these
respective orders are: {1}; 〈s〉 = {1, s}, 〈rs〉 = {1, rs}, 〈r2s〉 = {1, r2s},
〈r3s〉 = {1, r3s} and 〈r4s〉 = {1, r4s}, 〈r〉 = {1, r, r2, r3, r4}; and D10. (4 marks for
complete list). To see that this list is complete, note that any group containing
both a reflection ris and a rotation rj must include the identity, all four nontrivial
rotations, and a reflection, hence has order at least six, hence has order ten by
Lagrange’s theorem (2 marks any correct justification).
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Question 2 [25 marks].

(a) Consider the two permutations f, g ∈ S5 given by

f =

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
4 5 2 3 1

 , g =

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 5 1 4 2

 .

(i) Write each of f , g, and fg in disjoint cycle notation. [5]

We have f = (14325) and g = (13)(25) (1 mark each), and fg = (12)(34) (3
marks).

(ii) State the order of each of f , g, and fg. Briefly justify your answer with
reference to a result from the course. [3]

The orders are respectively 5, 2, 2, and students should be aware that the
order of a permutation is the least common multiple of the lengths of its
component (disjoint) cycles. (3 marks)

(iii) State the cycle type of each of f , g and fg. [3]

The cycle types are respectively (5), (2, 2, 1), (2, 2, 1) (1 mark each).

(iv) Which of f , g and fg are conjugate to one another? Briefly justify your
answer with reference to a result from the course. [3]

g and fg are conjugate to one another because they have the same cycle
type, but no others are conjugate. Students should be aware that cycle type
is a complete invariant for conjugacy in Sn.

(v) Which of f , g and fg are elements of the alternating group A5? Briefly
justify your answer with reference to a result from the course. [3]

All three belong to A5 since a permutation (written in disjoint cycle
notation) belongs to the alternating group iff it has an even number of cycles
of even length (and any number of odd cycles). (1 mark each)

(b) (i) Consider the element r3 of the dihedral group D10. Find the centraliser of
r3 in D10. [3]

All rotations commute with r3 so the centraliser contains all five rotations
(including the identity). It follows by Lagrange’s theorem that the
centraliser either consists only of rotations, or consists of all elements of D10.
Since r3s = sr−3 = sr2 6= sr3, r3 does not commute with s, so the centraliser
is not the whole of D10 and therefore must be {1, r, r2, r3, r4}. (3 marks any
valid argument).

(ii) Now instead consider the element r3 of the dihedral group D12. Find the
centraliser of r3 in D12. [3]

All rotations commute with r3, so the centraliser has cardinality at least six.
Since in this group r3s = sr−3 = sr3, r3 commutes with s and therefore
commutes with all elements of D12. (3 marks any valid argument)

(iii) Write down the centre of the group D10. [2]

All rotations (except the identity) fail to commute with s, so the centraliser
is just {1}. (2 marks)

© Queen Mary University of London (2024) Continue to next page



MTH6106 (2024) Page 5

Question 3 [25 marks].

(a) Give an example of a group G and subgroup H ≤ G such that H is not normal in
G. [2]

The simplest example is any 2-element subgroup of S3. (2 marks.)

(b) Show that:

(i) If N is a normal subgroup of an abelian group G, then G/N is also abelian. [3]

We have (g1N)(g2N) = (g1g2)N = (g2g1)N = (g2N)(g1N) using (in the
middle step) the fact that G is abelian. (3 marks)

(ii) If φ : G→ H is a group homomorphism and G is abelian, then imφ is
abelian. [3]

This can be argued directly using surjectivity; or, by the first isomorphism
theorem, the image is isomorphic to G/ kerφ which is abelian by the result of
the previous question ( 3 marks).

(c) Using the Third Isomorphism Theorem, or otherwise, prove that if H1 and H2 are
subgroups of an abelian group G, then

|H1H2| =
|H1| · |H2|
|H1 ∩H2|

.

Indicate clearly in your answer where, and how, you make use of the fact that G
is abelian.

Since G is abelian, both H1 and H2 are normal in G, so the third isomorphism
theorem is applicable (1 and a half marks). By the third isomorphism theorem
(H1H2)/H2 ' H1/(H1 ∩H2), so in particular |H1H2|/|H2| = |H1|/|H1 ∩H2| and
the result follows by rearrangement (2 and a half marks).

[4]

(d) Define

G := U56,, H1 := {1, 5, 9, 13, 25, 45}, H2 := {1, 3, 9, 19, 25, 17}.

Calculate |H1H2|. [4]

Using the previous result, since |H1| = 6 and |H2| = 6 and |H1 ∩H2| = 3, we have
|H1H2| = 36/3 = 12 (4 marks any correct argument).

(e) Let F4 denote the field with four elements, let F2
4 denote the set of all

two-dimensional vectors with entries in F4, and recall that GL2(F4) denotes the
group of invertible 2× 2 matrices with entries in F4. In this question we consider
the action π of GL2(F4) on F2

4 defined by π(A, v) := Av.

(i) How many elements of GL2(F4) belong to the stabiliser of the vector ( 1
0 )? [3]

Every matrix whose upper-left entry is 1 and whose lower left entry is 0 fixes
this vector, and such a matrix is invertible iff if the lower-right entry is
nonzero, so there are 12 such matrices (4 options for the upper right entry, 3
for the lower-right, 0 options for other entries). (3 marks)
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(ii) How many vectors belong to the orbit of the vector ( 1
0 )? [3]

All nonzero vectors belong to this orbit. To see this form the matrix which
has the desired vector as its first column, and fill in the second column with
any vector which is not a scalar multiple of the first vector. So 15 vectors
total. (3 marks)

(iii) Using an appropriate result from the course, calculate the order of GL2(F4). [3]

By the orbit-stabiliser theorem this equals the cardinality of the orbit of the
vector defined above, multiplied by the cardinality of its stabiliser, so
12× 15, i.e. 180. (3 marks)
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Question 4 [25 marks].

(a) Suppose that G is a group of order 117. Prove that G cannot be simple. State
carefully any additional results from the course which you require in your answer. [5]

If G is a group of order paq where p is prime, q is coprime to p, and a ≥ 1, write
np(G) for the number of subgroups of G with order pa. Then np(G)|q and
np(G) ≡ 1 mod p. (2 marks for stating this; it’s in the notes, but students should
still explain clearly what they’re doing here.) Since 117 = 9× 13, n3(G) is
congruent to 1 mod 3 and divides 13, hence must be 1. So G has a unique
subgroup of order 9. This subgroup must be normal since all subgroups conjugate
to it also have order 9 and hence are equal to it. So G has a nontrivial normal
subgroup and is not simple. (3 marks any correct argument)

(b) Suppose that G is a group of order 168, and let n7 denote the number of Sylow
7-subgroups of G. List all possible values that n7 could take which are consistent
with Sylow’s theorems. Is it possible to decide, using this list of values, whether
or not G is simple? Why, or why not? [4]

We have n7(G) ≡ 1 mod 7 and n7(G)|24 by the previous argument, so n7 could
be either 1 or 8. This does not preclude the possibility that G is simple, because
it might in principle have 8 subgroups of order 7 and be simple.

(c) Without proof, write down:

(i) A composition series for the group C27. [2]

1 C C3 C C9 C C27 is the only valid answer.

(ii) A composition series for the group D12. [2]

1 C {1, r, r2, . . . , r5}CD12 and 1 C {1, s}CD12 are valid answers. These
could be written respectively as 1 C C6 CD12 and 1 C C2 CD12.

(iii) A composition series for the group S4. [3]

The only correct answer is 1 C C2 C V4 CA4 C S4. The group V4 could
alternatively be written as C2 × C2 or as {id, (12)(34), (13)(24), (14)(23)}.

(iv) A composition series for one of the three groups listed in (i)–(iii) above
which is different to the composition series which you stated in your earlier
answer. [2]

As noted above there are two distinct options for (ii) and the student should
give whichever of these was not given previously.

(v) Show that if a group is abelian then all of its inner automorphisms are trivial. [2]

An inner automorphism φ : G→ G is an automorphism of the form
φ(g) = hgh−1 for some h ∈ G, so φ(g) = hgh−1 = hh−1g = 1g = g when G is
abelian. (3 marks)

(vi) Let p be a prime number and let G be the group of integers {0, 1, . . . , p− 1}
equipped with the binary operation of addition modulo p. By considering the
effect of each automorphism on the element 1, show that the outer
automorphism group of G has exactly p− 1 elements. [5]
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For every k = 1, 2, . . . , p− 1 we may define a homomorphism φk : G→ G by
φk(n) = kn mod p. Since Up is a group with respect to multiplication
modulo p, every such homomorphism φk has an inverse φk−1 , so all such
homomorphisms are automorphisms and the number of automorphisms of G
is at least p− 1. (2 marks any correct argument). On the other hand if two
automorphisms φ, ψ take the same value at 1 ∈ G then they must be
identical, so the number of automorphisms of G is also at most p− 1. (2
marks.) Since by the previous question the inner automorphism group is
trivial, the outer automorphism group has cardinality exactly p− 1. (1 mark)

End of Paper.
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