

Main Examination period 2024 – January – Semester A

MTH6106: Group Theory

Examiners: I.D. Morris, F. Rincón

You will have a period of **3 hours** to complete the exam. You have additional **30** minutes for scanning and submitting your solution.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: I.D. Morris, F. Rincón

Question 1 [25 marks].

- (a) For the following, either give an example or explain why no example can exist:
 - (i) A group with at least four elements in which every element has order either 1 or 2.
 [2]
 - (ii) A group with at least four elements in which every element has order either 1 or 4.
 - (iii) Two groups of order 24 which are not isomorphic to one another.
 - (iv) Two countably infinite groups which are not isomorphic to each other. [2]
- (b) Let $G = \{x \in \mathbb{R} : x \ge 0\}$ and define a binary operation \circ on G by $x \circ y := |x y|$. Decide which of the four group axioms are satisfied by (G, \circ) and which are not. For each axiom, give a brief justification for your answer. [5]
- (c) Using Lagrange's theorem, or otherwise, show that if g is an element of a group G such that |G| = n, then g^n is the identity element of G. [3]
- (d) Using the result of (c) above, show that if p is a prime number and n is an integer in the range $1 \le n \le p$, then $n^{p-1} \equiv 1 \mod p$. (Hint: consider the group \mathcal{U}_p .) [3]
- (e) List all subgroups of the dihedral group \mathcal{D}_{10} and indicate briefly why your list is complete. [6]

Question 2 [25 marks].

(a) Consider the two permutations $f, g \in S_5$ given by

	(1)	2	3	4	5			(1)	2	3	4	5	
f =	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	,	g =	$\left(\downarrow\right)$	\downarrow	\downarrow	\downarrow	\downarrow	
	$\backslash 4$	Э	Z	3	1/			(3	Э	T	4	2]	

	(i)	Write each of f , g , and fg in disjoint cycle notation.	[5]
	(ii)	State the order of each of f , g , and fg . Briefly justify your answer with reference to a result from the course.	[3]
	(iii)	State the cycle type of each of f , g and fg .	[3]
	(iv)	Which of f , g and fg are conjugate to one another? Briefly justify your answer with reference to a result from the course.	[3]
	(v)	Which of f , g and fg are elements of the alternating group A_5 ? Briefly justify your answer with reference to a result from the course.	[3]
(b)	(i)	Consider the element r^3 of the dihedral group \mathcal{D}_{10} . Find the centraliser of r^3 in \mathcal{D}_{10} . Give a brief justification for your answer.	[3]
	(ii)	Now instead consider the element r^3 of the dihedral group \mathcal{D}_{12} . Find the centraliser of r^3 in \mathcal{D}_{12} . Give a brief justification for your answer.	[3]

Continue to next page

[2]

(iii) Write down the **centre** of the group \mathcal{D}_{10} and give a brief justification for your answer.

Question 3 [25 marks].

- (a) Give an example of a group G and subgroup $H \leq G$ such that H is **not** normal in G. [2]
- (b) Show that:
 - (i) If N is a normal subgroup of an abelian group G, then G/N is also abelian. [3]
 - (ii) If $\phi: G \to H$ is a group homomorphism and G is abelian, then im ϕ is abelian. [3]
- (c) Using the Third Isomorphism Theorem, or otherwise, prove that if H_1 and H_2 are subgroups of an abelian group G, then

$$|H_1H_2| = \frac{|H_1| \cdot |H_2|}{|H_1 \cap H_2|}.$$

Indicate clearly in your answer where, and how, you make use of the fact that G is abelian. [4]

(d) Define

$$G := \mathcal{U}_{56,}, \qquad H_1 := \{1, 5, 9, 13, 25, 45\}, \qquad H_2 := \{1, 3, 9, 17, 19, 25\}.$$

Calculate $|H_1H_2|$.

- (e) Let \mathbb{F}_4 denote the field with four elements, let \mathbb{F}_4^2 denote the set of all two-dimensional vectors with entries in \mathbb{F}_4 , and recall that $\operatorname{GL}_2(\mathbb{F}_4)$ denotes the group of invertible 2 × 2 matrices with entries in \mathbb{F}_4 . In this question we consider the action π of $\operatorname{GL}_2(\mathbb{F}_4)$ on \mathbb{F}_4^2 defined by $\pi(A, v) := Av$.
 - (i) How many elements of $GL_2(\mathbb{F}_4)$ belong to the stabiliser of the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$? [3]
 - (ii) How many vectors belong to the orbit of the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$? [3]
 - (iii) Using an appropriate result from the course, calculate the order of $GL_2(\mathbb{F}_4)$. [3]

Question 4 [25 marks].

- (a) Suppose that G is a group of order 117. Prove that G cannot be simple. State carefully any additional results from the course which you require in your answer. [5]
- (b) Suppose that G is a group of order 168, and let n_7 denote the number of Sylow 7-subgroups of G. List all possible values that n_7 could take which are consistent with Sylow's theorems. Is it possible to decide, using this list of values, whether or not G is simple? Why, or why not?

© Queen Mary University of London (2024)

Continue to next page

 $[\mathbf{2}]$

[4]

 $[\mathbf{4}]$

- (c) Without proof, write down:
 - (i) A composition series for the group C_{27} . [2]
 - (ii) A composition series for the group \mathcal{D}_{12} . [2]
 - (iii) A composition series for the group S_4 . [3]
 - (iv) A composition series for one of the three groups listed in (i)–(iii) above which is different to the composition series which you stated in your earlier answer.
- (d) Show that if a group is abelian then all of its inner automorphisms are trivial. [2]
- (e) Let p be a prime number and let G be the group of integers $\{0, 1, \ldots, p-1\}$ equipped with the binary operation of addition modulo p. By considering the effect of each automorphism on the element 1, show that the outer automorphism group of G has exactly p-1 elements. [5]

End of Paper.

© Queen Mary University of London (2024)