
Main Examination period 2022 – January – Semester A

MTH6106: Group Theory

You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your work-
ing for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution
to an exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 3 hours in which to complete and submit this assessment.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case
you experience computer problems. Only one attempt is allowed – once you have
submitted your work, it is final.

Examiners: I.Morris, R. Johnson
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Question 1 [25 marks].

(a) Give examples of:

(i) A group of order 24 which is not abelian. [2]

Solution. (Unseen) Probably the easiest answer is the dihedral group
D24 = {1, r, r2, . . . , r11, s, sr, . . . , sr11} which is the group of symmetries of a
regular dodecagon. Another option is S4.

(ii) A group of infinite order which is not abelian. [2]

Solution. (Unseen) The general linear group of dimension 2 over R, or any
of a large range of matrix groups, or the group of bijections from a particular
infinite set to itself, or the infinite dihedral group D∞, all work here.

(iii) A pair of abelian groups of the same order which are not isomorphic to one
another. (You do not need to give a proof that the two groups are not
isomorphic.) [2]

Solution. (Unseen) Probably the easiest example is the cyclic group of
order 4 and the Klein 4-group.

(iv) A group G and a two subgroups H1, H2 ≤ G such that H1 ∪H2 is not a
subgroup of G. [3]

Solution. (Unseen) Let G be any group which has two distinct elements of
order 2 and let H1, H2 be the subgroups generated by those two elements.
Then H1 ∪H2 contains three elements but cannot be a subgroup because it
has cardinality 3 but contains an element of order 2, which contradicts
Lagrange’s theorem.

A more concrete example would be the Klein 4-group
⟨a, b, c|ab = c, a2 = b2 = c2 = 1⟩ with H1 = {1, a} and H2 = {1, b}.

(b) Complete the following table in a way which results in the Cayley table of a group.

1 a b c d
1 1 a b c d
a a b c d 1
b
c
d

[5]

Solution. (Seen similar) The only solution is

1 a b c d
1 1 a b c d
a a b c d 1
b b c d 1 a
c c d 1 a b
d d 1 a b c

.
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(c) The following table is not the Cayley table of a group. Indicate which group
axioms are inconsistent with this table. For each group axiom which is
inconsistent with the table, give an example of where in the table the
inconsistency occurs.

1 a b c d
1 1 a b c d
a a b d 1 c
b b 1 c d a
c c d a b 1
d d c 1 a b

[5]
Solution. (Seen similar) The axiom of inverses is violated, because while every element
has a left inverse and a right inverse, the left and right inverses are not equal. So for
example ac = 1 but ca = d ̸= 1, contradicting the inverse axiom. (2 marks).
Associativity is also violated because for example (aa)a = ba = 1 but a(aa) = ab = d.
(3 marks.) In this question 2 marks are available for identifying which axioms are
violated and 3 marks are available for the reasoning.

Recall that GLn(R) denotes the group of invertible n× n matrices with real entries. Let
O(n) denote the set

O(n) :=
{
A ∈ GLn(R) : ATA = I

}
where I denotes the n× n identity matrix and AT denotes the transpose of the matrix
A. Show that O(n) is a subgroup of GLn(R). [6]
Solution. (Unseen) Using the subgroup test, we would need to show that O(n) is
nonempty and that for every A,B ∈ O(n) the product A−1B is an element of O(n).
(Or, we could show that AB−1 is an element of O(n): either is fine if used consistently.)
To see that O(n) is nonempty we notice that it contains the identity. (2 marks). If
A,B ∈ O(n) then (AB−1)TAB−1 = (B−1)TATAB−1 = (B−1)TB−1 = (BBT )−1. But if
B ∈ O(n) then BT = B−1 (2 marks for this observation in some form) so BBT is the
identity and therefore this expression is the identity as required. (2 marks).
Note that there are 2 marks for explaining why the identity BBT = I is true, since it is
not immediately obvious a priori.

Question 2 [25 marks].

(a) Let G be a group and let f, g ∈ G. Suppose that f and g have finite order and
that fg = gf . Show that the order of fg is less than or equal to the least
common multiple of the orders of f and g. [3]

Solution. (Seen similar.) Let n be the least common multiple of the order of f
and the order of g, so that n = k ord(f) = ℓ ord(g), say. We have
(fg)n = fngn = (f ord(f))k(gord(g))ℓ = 1, which implies that the order of fg is not
greater than n. (3 marks.)
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(b) Give an example of two permutations f, g ∈ S3 such that the order of ord(fg) is
not equal to the least common multiple of the orders of f and g. [3]

Solution. (Unseen.) There are various options: if f = g−1 then ord(fg) = 1, so
we could take f = g = (12), say, or f = (123) and g = (132). Alternatively we
could take f and g non-commuting with orders 2 and 3, and then the least
common multiple of the orders would be 6, but there are no elements of order 6 in
S3.

(c) Consider the permutations f, g ∈ S8 given by

f =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 6 4 3 1 8 7 2

 , g =

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 8 1 4 7 5 2 6


Write f , g and fg in disjoint cycle notation and state the order of each of f , g
and fg. [9]

Solution. (Seen similar.) We have f = (15)(34)(268) and g = (13)(28657) and
fg = (143576) (for 1.5, 1.5 and 3 marks respectively) so the orders of f , g and fg
are 6, 10 and 6 respectively (1 mark each).

(d) Let n ≥ 3 and consider the group Sn.

(i) Show that every element of Sn can be written as a product of transpositions. [2]

Solution. (Bookwork.) Every element of Sn can be written as a product of
disjoint cycles (a11a12 · · · a1n1)(a21a22 · · · a2n2) · · · ar1 · · · arnr). Every cycle
(a1 · · · an) can be written as the product of transpositions
(a1a2)(a2a3) · · · (an−1an). Combining these two facts yields the result. (2
marks).

(ii) Let (1k), (1ℓ) ∈ Sn be transpositions, where 2 ≤ k, ℓ ≤ n and k ̸= ℓ. Write
down the permutation (1k)(1ℓ)(1k) in disjoint cycle notation. [2]

Solution. (Seen similar.) The answer is (kℓ).

(iii) Suppose that H is a subgroup of Sn which contains every transposition of
the form (1k), where 2 ≤ k ≤ n. Explain why H must be equal to Sn. [2]

Solution. (Unseen.) If (kℓ) is an arbitrary transposition with 1 ≤ k < ℓ ≤ n
then (kℓ) ∈ H by definition if k = 1, and (kℓ) = (1k)(1ℓ)(1k) ∈ H otherwise.

(iv) Suppose that H is a subgroup of Sn which contains the permutation (12)
and also contains the permutation (2345 · · ·n). Show that H contains every
permutation of the form (1k) where 2 ≤ k ≤ n. [3]

Solution. (Seen similar.) We have
(2345 · · ·n)k−1(12)(2345 · · ·n)−(k−1) = (1k) for every k = 2, . . . , n. (Students
should already be familiar with how to conjugate cycles, but have not seen
this specific application of the calculation.)

(v) What is the group ⟨(12), (2345 · · ·n)⟩? [1]

Solution. (Unseen.) This group is Sn, because by (iv) this group contains
every permutation of the form (1k) and by (iii) a group with this property
must be Sn.
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Question 3 [25 marks].

(a) Suppose that G and H are finite groups and that ϕ : G → H is a homomorphism.

(i) What information does Lagrange’s theorem give you about the relationship
between |G|, |G/ kerϕ| and | kerϕ|? [2]

Solution. (Unseen.) The cardinality of |G/ kerϕ| is the number of cosets of
kerϕ in G, which is |G : kerϕ|, so by Lagrange’s theorem
|G| = |G/ kerϕ| · | kerϕ|.

(ii) What information does the First Isomorphism Theorem give you about the
relationship between |G/ kerϕ| and | imϕ|? [2]

Solution. (Unseen.) The first isomorphism theorem implies that |G/ kerϕ|
must equal | imϕ| since the two groups in question are isomorphic.

(iii) Indicate why | imϕ| divides both |G| and |H|. [3]

Solution. (Unseen.) The previous two answers combine to give
|G| = | imϕ| · | kerϕ|, and since imϕ ≤ H we have | imϕ|||H| by Lagrange’s
theorem.

(iv) Suppose that the numbers |G| and |H| are coprime. Prove that ϕ(g) = 1H
for all g ∈ G. [2]

Solution. (Unseen.) By the previous answer, | imϕ| must divide both |G|
and |H|, so if those two numbers are coprime then | imϕ| must equal 1. Since
necessarily 1H = ϕ(1G) ∈ imϕ the result follows.

(b) Let G be a finite group and let H ≤ G. Show that for every g ∈ G, the set
gHg−1 = {ghg−1 : h ∈ H} is a subgroup of G. Now explain briefly why the
following result holds: if H is the only subgroup of G with cardinality |H|, then H
must be normal in G. [5]

Solution. (Bookwork.) Fix g ∈ G. To show that gHg−1 is a subgroup of G it’s
sufficient to show that it is nonempty, and that for every f1, f2 ∈ gHg−1 we have
f1f

−1
2 ∈ gHg−1. To see the former we just note that 1 = g1g−1 ∈ gHg−1. To see

the latter, let gh1g
−1, gh2g

−1 ∈ gHg−1. We have (gh2g
−1)−1 = gh−1

2 g−1 so
gh1g

−1(gh2g
−1)−1 = gh1h

−1
2 g−1 ∈ gHg−1, using the fact that h1h

−1
2 ∈ H. (3 and a

half marks any correct argument.) If H is the unique subgroup of G with
cardinality |H|, then for every g ∈ G, gHg−1 is a subgroup of G with cardinality
|H| and therefore must equal H. This implies that H is normal by the definition
of normality. (one and a half marks for correct reasoning along these lines: the
equation |H| = |gHg−1| need not be proved.)

(c) Using Sylow’s theorems, show that there is no simple group of order 51. [5]

Solution. (Seen similar.) Let G be a group of order 51. By Sylow’s third
theorem, the number of subgroups of G with order 17 divides 3, and also is
congruent to 1 modulo 17. The only non-negative integer with these properties is
1, so there is a unique subgroup of G with order 17. By the result of the previous
question this subgroup is normal in G, so G is not simple.
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(d) Using Sylow’s theorems, or otherwise, show that A5 has exactly 6 subgroups of
order 5. State (without proof) any facts about A5 which are required in your
argument. [6]

Solution. (Unseen.) Let n5(A5) denote the number of subgroups of A5 which
have order 5. Since |A5| = 60, Sylow’s third theorem implies that n5(A5) divides
12 and also is congruent to 1 modulo 5 (three marks). The only non-negative
integers with these characteristics are 1 and 6. (1 mark.) If A5 had a unique
subgroup of order 5 then that subgroup would be normal, but we know that A5 is
simple, so n5(A5) cannot equal 1 and therefore must equal 6 (2 marks). Students
will have seen a proof that A5 is simple and are also aware that |An| = n!/2, so
should be familiar with the required facts.

An alternative argument is as follows. It follows from Lagrange’s theorem that a
group of order 5 must consist of the identity together with four elements of order
5, so the result holds if and only if A5 contains exactly 24 elements of order 5,
which holds if and only if it contains exactly twenty-four 5-cycles (three marks for
these observations). Since every 5-cycle is even (1 mark for making this
observation, 1 mark for justifying it) it is enough to show that S5 contains
twenty-four 5-cycles. But the number of 5-cycles in S5 is just the number of
tuples of the form (1abcd) where a, b, c, d ∈ {2, 3, 4, 5} and there are 4! = 24 such
tuples (two marks any correct counting argument).

Question 4 [25 marks].

(a) Consider the group GL2(C) of all 2× 2 complex matrices equipped with the usual
operation of matrix multiplication. Recall that A∗ denotes the conjugate
transpose of the matrix A.

(i) Suppose that ρ : GL2(C) → GL2(C) is an inner automorphism and let
A ∈ GL2(C). What is det(ρ(A))? [3]

Solution. (Unseen, but easy). If ρ is an inner automorphism then
ρ(A) = BAB−1 for some B ∈ GL2(C), so det ρ(A) = det(BAB−1) = detA.
(2 marks)

(ii) Show that the function ρ̂ : GL2(C) → GL2(C) defined by ρ̂(A) = (A∗)−1 is
an automorphism. [4]

Solution. (Seen similar.) We need to check that ρ̂ is a bijection (for 2
marks) and that it is a homomorphism (for 2 marks). To see that it is a
bijection it is sufficient to note that it is its own inverse. To see that it is a
homomorphism we note that for any A,B ∈ GL2(C) we have
ρ̂(AB) = ((AB)∗)−1 = (B∗A∗)−1) = (A∗)−1(B∗)−1 = ρ̂(A)ρ̂(B) using
standard rules from linear algebra.
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(iii) Is the function ρ̂ defined in (ii) is an inner automorphism? Justify your
answer with a proof or a counterexample. [2]

Solution. (Seen similar.) If it were an inner automorphism then we would
have ρ̂(A) ≡ detA, but this is clearly not true as can be seen by, for
example, taking A to be a diagonal matrix with entries 1 and 2.

(b) Recall that D10 = {1, r, . . . , r4, s, sr, . . . , sr4} is the group of symmetries of a
regular pentagon. Let X5 denote the set of all possible colourings of the vertices
of a regular pentagon using two colours, and let us say that two colourings are
equivalent if one of them can be transformed into the other by applying a
symmetry of the polygon.

(i) How many elements does X5 have? [1]

Solution. (Seen similar) There are 25 = 32 elements.

(ii) Suppose that srk ∈ D10 is a reflection, where 0 ≤ k < 5. How many elements
of X5 are stabilised by srk? [3]

Solution. (Seen similar) There are 8 elements stabilised by any given
reflection, since we may freely choose the vertex which lies on the line of
reflection and can freely choose exactly two other vertices. So we have three
free choices and get 23 options.

(iii) Suppose that rk ∈ D10 is a rotation, where 0 < k < 5. How many elements of
X5 are stabilised by rk? [3]

Solution. (Seen similar) Only constant colourings are stabilised by a
nontrivial rotation so the answer is 2.

(iv) How many elements of X5 are stabilised by 1 ∈ D10? [1]

Solution. (Seen similar) All 32 elements.

(v) Using the orbit-counting lemma, find the number of equivalence classes of
elements of X5. [3]

Solution. (Seen similar).

By the previous results we have 1 element with stabiliser of size 32, four
elements with a stabiliser of size 2, five elements with a stabiliser of size 8.
So the number of equivalence classes is

1

10
(1× 32 + 4× 2 + 5× 8) = 8.

(vi) Now let p ≥ 3 be an arbitrary prime number, let D2p denote the group of
symmetries of a regular p-sided polygon, and let Xp denote the set of all
colourings of a regular p-sided polygon using two colours. We say that two
elements of Xp are equivalent if one of them can be transformed into the
other by the application of an element of D2p. By modifying the preceding
argument, find the number of equivalence classes of elements of Xp. Indicate
explicitly which step of your argument uses of the fact that p is prime. [5]

Solution. (Unseen.) We have 2p elements in Xp. One element of D2p has a
stabiliser of size 2p, p− 1 elements have a stabiliser of size 2, and p elements
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have a stabiliser of size 2(p+1)/2), so we get

1

2p

(
2p + 2(p− 1) + p2(p+1)/2

)
.

for 3 marks. We needed primeness of p to guarantee that every nontrivial
rotation has a stabiliser of size 2. (2 marks just for indicating that it is the
rotations which require primeness.)

End of Paper.
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