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Group Actions Gixx —>x

Suppose G is a group and X is a set. An action of G on X is a collection

m = (mg|g € G) of functions from X to X such that: W/} EW"’)

Q 0= idx, and Aila)=A
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Group Actions 6‘[,_ UR)

‘/y Exercise. Let G = GL(2,R) and X = R2.

(1) Show that the map ‘4) = (4, 5 )
e, af’
ab X ax + by
Gx X=X, , )
A ((c d) <y>> ~ (cx+dy> M. = q. 6:.)
2
—_ [ a(,

defines a G action.
(2) What are the orbits and fixed point sets of this G action?

The collection of all invertible matrices constitutes the general linear group GL(2,R).
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Group Actions coslf -Eenlf -
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Orbit-counting Lemma A:GrK—>X

Theorem: Suppose G is a finite group, and 7 is an action of G on X. For each
R S

g € G, define X GrKx—=>NK
fix(g) = {x € X|mg(x) = x}. B b (x| |Stabrmy
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Orbit-counting Lemm:zf )
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Simple Groups
Definition: Suppose G is a group. G is simple if G # {1} and G has no normal subgroups
except for G and {1}.

If G is a group and {1} < N> G, then we can break _Ci.lip into two smaller groups N and
G/N, and if we understand these smaller groups then we understand a lot about G. A simple
group is one which can’t be broken down in this way. This is a bit like prime numbers being the
building blocks from which all positive integers are built.

compus— ) — BC-PN - va

‘6 If p is prime, then the cyclic group C, is simple, by Lagrange's Theorem.

Examples:

@ If nis composite, say n = ab, then C, is not simple: it has a normal subgroup < z? >.
@ Dy, is not simple: the subgroup < r > has index 2, so is normal. 223= 1’4

@ S, is not simple if n > 3, since A, is a normal subgroup.
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Simple Groups
Proposition

Suppose G is an abelian group. Then G is simple if and only if G is finite and |G| is a
prime number p, in which case G = C,,.
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Simple Groups



Simplicity of the alternating groups (/%37
" Conaer the swbgrowp o jads (12230 (13)(24)7 (/tf)/zg)} ,5,,— 2

Consider the subgroup
V ={ld,(12,34),(13,24),(14,23)}.

We saw earlier that V' is a normal subgroup of Sy; since it's contained in Sy, it must
also be a normaI subg’Ww\/commsesall the elements of Sy of cycle type
(1,1,1,1) or (2,2). So the remaining eight elements of Sy all have cycle type (3,1).

In fact V is the only normal subgroup of A4 apart from {id} and A4. To prove “this,
we start by considering actions. Recall that the natural action of S, on {1,...,n} is
defined by mgz(x) = g - x. We can apply this for any subgroup of S, as well. Recall also
that this action is transitive if the only orbit is {1,.

_M123). (134), (129, (132) //93);//92),
(ﬂqu( 23),(134%),( )(23[{);(2[/})) o

(12)(34),(13)(2%)> ((%) (23)
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Simplicity of the alternating groups 5 , Al l;(/]n

Lemma
Suppose {1} # N > A,. Then the action of N on {1,..., n} is transitive. J
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Simplicity of the alternating groups

Proposition 6.3
The only normal subgroups of A4 are {id}, A4 and V. J

PAooﬁ N, Pﬂ(}% N £ gc,{f Actcon 3{ N on{/;zu’;‘/f
Lo arsibrus-  JN[ 5 olovisih ble éﬂ 7
/NI 24, NFV Toom N Con

W 4&( Oﬂ"’ wilk 4 [3)/)

N/ s oliwoshle 67 /2 —:)ﬂt/ =N

%) —
farn an oL ”



Simplicity of the alternating groups ? /7//-( < /Qn
Tr—y N‘ﬂn, /\//)aﬂn ’f_ngn {/)L..‘ nrr}?
Suppose n > 5 and {id} # N> A, ﬁem{zﬂfl 1)# {id}. f/,z, r)j
prets e Notural aeleor A on Flo25 - nf 4

f,;,,.ﬂéu fo we Can Tnel __éf/ 3 M

g ﬁéoqn7 ﬂ,ema/@ﬁ C/\/ bes g(,\/) /jﬁ(ﬁ
weé:an b d Novons '&—%

/TC(ygnrv ,Jo ébdﬂﬁ““f

ﬁ‘/ﬁ”ﬁ echn-1 g=(1}) gone Ve




B I=h, a=/l,n S (7-04“*
pop ar i
h=(1n)(b¢e) €dfn
gw”h/"-a’ ik Ji{/’ gho=d1=""
Ao ghgH' € ohnr NN £ FA7

Mﬂc;g/v f-/é -gha=72=5

C£/,Q, LN



2,) 3[7:/7 WQ’?”¢> jqf")) b, ¢#(, 4,n

h; (chcf) 5'7 =/ (77”'(/) V’/
j/’ﬁ—’/’in’ /’ﬁ,, qu’ﬁ 9=
gh@ B ehns NN

g;,@/; b= jl,ﬁ 1= ghn=g-n=1
9hg # co/(?n,,m\/%§ ol




Simplicity of the alternating groups

Lemma 6.5
Suppose N> As. Then NN A,_1 # V.




Simplicity of the alternating groups
We give examples to illustrate the above proof. Suppose N > Ag.
@ Suppose g = (16,2435) € N. We set h = (16,45). Then
ghg 1h™1 =(23,45) € NN Us.
@ Suppose g = (126,435) € N. We set h = (134). Then
ghg~th™! = (14253) € NN As.

= (16524385 €N bhe C165(4S) ELs
_ (16) (2043 (3S)
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Simplicity of the alternating groups

Lemma 6.6
For n > 5, A, is simple.




Composition Series
Definition: Suppose G is a group. A normal series of length r for G is a series

R
6, =G0<161<1---<16,,$£1}

where Gp = G and G, = {1}.
This series is called a composition series if G;/G; 1 is simple for each i

Example:

) G113 trerell
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Composition Series

Suppose G is a group and N> G. Then G/N is simple if and only if there is no K
such that N < K> G.

3) G-:-CIZ
C/L/1><ZL7 = 4297 = {'}
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Composition Series

Corollary 6.8

Every finite group has a composition series.
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Composition Series

Jorda-Holder Theorem

Suppose G is a group, and that G has two composition series

GG <---«4G,

Then r = s and the groups

are isomorphic to the groups

in some order.

and H0<H1<1-"<H5<{1}.

GO Gr—l
GG
Hy  He
H' 7 H




Composition Series
Definition: Suppose G is a group and G has a composition series. The composition
length of G is the length of any composition series for G, and the compaosition

factors of G are the simple groups Gy/Gi, ..., G,—1/G, in any composition series for
G.
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Composition Series
Example:

e If G = {1}, then G has no composition factors.

@ If G is simple, then the only composition factor of G is G.

o If G = C12, then we saw that the quotients in a composition series for G have
orders 2,2,3. Since any group of order p (for p a prime) is isomorphic to C,, the
composition factors of C12 are Cp,C2,C3. (Note that when we list the composition
factors of a group, factors can appear more than once.)

o If G =S8, for n > 5, then the composition factors of G are C» and A,,.



Exams Style Questions

Example: Fond T composibion S /&
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Exams Style Questions

Enompls: find s compasilive Jeret 7
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QMplus Quiz

Attempt Quiz 10 at QMplus page



Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

@ Kilein group often symbolized by the letter V4 or as K4y = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =p=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r r .., Y os s, s, ..., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.
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