

Group Theory

Week 10, Lecture $1,\,2\,\&\,3$

Dr Lubna Shaheen

Table of Contents

- **1** Actions, Revision
- Orbit-counting Lemma
- **3** Simple Groups
- **4** Simplicity of the alternating groups
- **6** Composition series
- **6** Exams Style Questions

Suppose G is a group and X is a set. An action of G on X is a collection $\pi = (\pi_g | g \in G)$ of functions from X to X such that:

 $1 \pi_1 = \mathsf{id}_X, \text{ and }$

$$\ \ \, @ \ \ \, \pi_f \circ \pi_g = \pi_{fg} \text{ for all } f,g \in G.$$

Exercise. Let $G = GL(2, \mathbb{R})$ and $X = \mathbb{R}^2$.

(1) Show that the map

$$G \times X \to X, \qquad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix},$$

defines a G action.

(2) What are the orbits and fixed point sets of this G action?

The collection of all invertible matrices constitutes the general linear group $GL(2,\mathbb{R})$.

Exercise. Let $H \le G$, and define H action by restricting the map $H \times X$. Calculate the orbits and fixed point sets in the following cases:

(1) H = SO(2).
(2) H =
$$\left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}$$
.
(3) H = $\left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}$.
(4) H = $\left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}$.
(5) H = $\left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$.

Orbit-counting Lemma

Theorem: Suppose G is a finite group, and π is an action of G on X. For each $g \in G$, define

$$\mathsf{fix}(g) = \{x \in X | \pi_g(x) = x\}.$$

Then the number of orbits of π is

$$rac{1}{|G|}\sum_{g\in G}|\mathsf{fix}(g)|.$$

Orbit-counting Lemma

Orbit-counting Lemma

Example:

Definition: Suppose G is a group. G is **simple** if $G \neq \{1\}$ and G has no normal subgroups except for G and $\{1\}$.

If G is a group and $\{1\} < N \ge G$, then we can break G up into two smaller groups N and G/N, and if we understand these smaller groups then we understand a lot about G. A simple group is one which can't be broken down in this way. This is a bit like prime numbers being the building blocks from which all positive integers are built.

Examples:

- If p is prime, then the cyclic group C_p is simple, by Lagrange's Theorem.
- If n is composite, say n = ab, then C_n is not simple: it has a normal subgroup $\langle z^a \rangle$.
- \mathcal{D}_{2n} is not simple: the subgroup < r > has index 2, so is normal.
- S_n is not simple if $n \ge 3$, since A_n is a normal subgroup.

Proposition

Suppose G is an abelian group. Then G is simple if and only if G is finite and |G| is a prime number p, in which case $G \cong C_p$.

Consider the subgroup

 $V = \{Id, (12, 34), (13, 24), (14, 23)\}.$

We saw earlier that V is a normal subgroup of S_4 ; since it's contained in S_4 , it must also be a normal subgroup of S_4 . V comprises all the elements of S_4 of cycle type (1,1,1,1) or (2,2). So the remaining eight elements of S_4 all have cycle type (3,1). In fact V is the only normal subgroup of A_4 apart from $\{id\}$ and A_4 . To prove this, we start by considering actions. Recall that the **natural action** of S_n on $\{1, \ldots, n\}$ is defined by $\pi_g(x) = g \cdot x$. We can apply this for any subgroup of S_n as well. Recall also that this action is **transitive** if the only orbit is $\{1, \ldots, n\}$.

Lemma

Suppose $\{1\} \neq N \supseteq A_n$. Then the action of N on $\{1, \ldots, n\}$ is transitive.

Proposition 6.3

The only normal subgroups of A_4 are $\{id\}$, A_4 and V.

Lemma 6.4 Suppose $n \ge 5$ and $\{id\} \ne N \trianglerighteq A_n$. Then $N \cap A_{n-1} \ne \{id\}$.

Lemma 6.5 Suppose $N \supseteq A_5$. Then $N \cap A_{n-1} \neq V$.

We give examples to illustrate the above proof. Suppose $N \supseteq A_6$.

- Suppose $g = (16, 2435) \in N$. We set h = (16, 45). Then $ghg^{-1}h^{-1} = (23, 45) \in N \cap A_5$.
- Suppose $g = (126, 435) \in N$. We set h = (134). Then $ghg^{-1}h^{-1} = (14253) \in N \cap A_5$.

Lemma 6.6 For $n \ge 5$, A_n is simple.

Definition: Suppose G is a group. A normal series of length r for G is a series

$$G_0 \lhd G_1 \lhd \cdots \lhd G_r,$$

where $G_0 = G$ and $G_r = \{1\}$.

This series is called a **composition series** if G_i/G_{i+1} is simple for each *i*

Example:

Lemma 6.7

Suppose G is a group and $N \supseteq G$. Then G/N is simple if and only if there is no K such that $N < K \supseteq G$.

Corollary 6.8

Every finite group has a composition series.

Jorda-Holder Theorem

Suppose G is a group, and that G has two composition series

 $G_0 \lhd G_1 \lhd \cdots \lhd G_r$ and $H_0 \lhd H_1 \lhd \cdots \lhd H_s \lhd \{1\}.$

Then r = s and the groups

$$rac{G_0}{G_1},\ldots,rac{G_{r-1}}{G_r}$$

are isomorphic to the groups

$$\frac{H_0}{H_1},\ldots,\frac{H_{r-1}}{H_r}$$

in some order.

Definition: Suppose G is a group and G has a composition series. The **composition** length of G is the length of any composition series for G, and the **composition** factors of G are the simple groups $G_0/G_1, \ldots, G_{r-1}/G_r$ in any composition series for G.

Example:

- If $G = \{1\}$, then G has no composition factors.
- If G is simple, then the only composition factor of G is G.
- If G = C₁₂, then we saw that the quotients in a composition series for G have orders 2, 2, 3. Since any group of order p (for p a prime) is isomorphic to C_p, the composition factors of C₁₂ are C₂, C₂, C₃. (Note that when we list the composition factors of a group, factors can appear more than once.)
- If $G = S_n$ for $n \ge 5$, then the composition factors of G are C_2 and A_n .

Exams Style Questions

Exams Style Questions

QMplus Quiz

Attempt Quiz 10 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1,-1,i,-i,j,-j,k,-k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.