Maths & Stats Pre-Sessional Tutorial

Topic 4: Simple Functions

Exercise 1

A large company would like to investigate if the level of education, measured in years of education (EDU), is determinant in having a higher salary. Using the company's human resource information, the following model has been estimated:

In(WAGE) = 1.439 + .0834 EDU

- a) Define which variable in the above model is the dependent and which one is the independent variable.
- b) Is 0.0834 an estimator or an estimate? Explain your answer.
- c) You want to test whether having more years of education expresses the possibility of having a higher salary. Write down the null and the alternative hypotheses.
- d) Determine whether years of education has a positive or negative impact on the salary.
- e) Is the above model a linear model?
- f) Draw the regression line.
- g) If years of education does not have any impact on the salary, how the regression line changes. Draw the new line.

Exercise 2

Select the correct answer:

The ratio of the change in y-values to the change in x-values is called:

- a) Dependent variable
- b) Independent variable
- c) Intercept
- d) Slope

Exercise 3

Select the correct answer:

A horizontal line has a slope with a value that is:

- a) positive
- b) undefined
- c) negative
- d) zero

Exercise 4

Standard form for a linear equation is:

- a) y = x
- b) y = mx + b
- c) Y-Y1/X-X1
- d) Ax + By = C

Exercise 5

Write down the functions and draw the graph of the functions:

- a) passing through (0,1) and having slope -2
- b) passing through (-2,2) and parallel to: y = 2 5x

Exercise 6

Consider the following quadratic function:

- i. $f(x) = -x^2 + 8x 12$
- ii. $f(x) = 2x^2 11x 3$
- iii. $f(x) = x^2 + 6x + 9$
 - a) Explain whether the functions are convex or concave.
 - b) After solving an optimisation problem for equation (ii), we obtain the following point (3, -21). Is this point a maximum or a minimum point of the function.

Exercise 7

Compute simple return and log return for the stock below and complete the table.

Period	Price	Simple Return	Log Return
Year 1	100	-	-
Year 2	200		
Year 3	100		
	Average return:		

Exercise 8

An economy is forecast to grow continuously so that the gross national product (GNP) measured in billions of dollars, after t years is given by:

$$88 = 80e^{0.02t}$$

After how many years is GNP forecast to be \$88 billion? What does the model predict about the value of GNP in the long run?

Exercise 9

A model for GDP, g, measured in billions of dollars, over a period of t years can be formulated in the form : $g = Be^{At}$, where A and B are two parameters.

Can this model be estimated using a linear regression model? Explain your answer.

Exercise 10

Compute the present value of £500 to be received in one year's time given the interest rate of 8%.

Exercise 11

Compute the present value of receiving 1 million at the end of each of the next three years given the interest rate of 12%.

Exercise 12

Determine the present value of \$25,000 to be received in the future in the following situations. In each case, assume the interest rate is 8%.

- a) Payment is received at the end of one year's time given annual compounding.
- b) Payment is received at the end of 20 years' time given annual compounding.
- c) Payment is received at the end of one year's time given quarterly compounding (i.e., every three months).
- d) Payment is received at the end of 20 years' time given quarterly compounding.
- e) Payment is received at the end of one year's time given continuous compounding.
- f) Payment is received at the end of 20 years' time given continuous compounding.

Check your knowledge:

Test your knowledge with the following multiple-choice questions.

For each question, select the correct answer. Explain your decision.

Question 1

Determine the missing value in this table of values for the function $y = 2^x$.

X	$y = 2^x$
-1	0.5
0	
1	2

a) 1

b) -1

c) 0

d) 2

Question 2

Determine the range of $y = 6^x$.

- a) x > 0
- b) y is in the interval $(-\infty, \infty)$
- c) y < 0
- d) y > 0

Question 3

Which exponential function is decreasing?

a)
$$y = \left(\frac{1}{3}\right)^{x}$$

b) $y = 7.7^{x}$
c) $y = 1.383^{x}$

d)
$$y = \left(\frac{5}{2}\right)^{x}$$

Question 4

The expression log(x) represents the common logarithm of x. What is the value of the base of log(x)?

- a) 1
- b) 0
- c) e
- d) 10

Question 5

For which value of x is y = log(x) not defined??

- a) X = -9
- b) X = 1/9
- c) X = 1
- d) X = 81

Question 6

Which logarithm is equal to log(3x - 1) - 5log(x)?

a)
$$log\left(\frac{3x-1}{x^5}\right)$$

b) $log\left(\frac{3x-1}{5x}\right)$

$$\int \log\left(\frac{1}{5x}\right)$$

c)
$$log(x^5 + 3x - 1)$$

Question 7

To increase a given present value, the discount rate should be adjusted:

- a) upward.
- b) downward.

Question 8

With continuous compounding at 10 percent for 30 years, the future value of an initial investment of \$2,000 is closest to

- a) \$34,898.
- b) \$40,171.
- c) \$164,500.
- d) \$328,282.

Explanation: $FV = $2000 * e^{(0.10*30)} = 40.171

Question 9

In 3 years, you are to receive \$5,000. If the interest rate were to suddenly increase, the present value of that future amount to you would

- a) fall.
- b) rise.
- c) remain unchanged.
- d) cannot be determined without more information.

Question 10

What is the present value of $\pm 520,000$ expected to be received in three years' time, if the business concerned requires a return of 10% on sums invested? Answers are given to the nearest $\pm '000$.

- a) £692k
- b) £432k
- c) £473k
- d) £390k

Question 11

Windsor Ltd is considering a project, which will involve the following cash inflows and (out)flows:

	£'000
Initial outlay	(400)
Afterone year	40
After two years	300
After three years	300

What will be the NPV (net present value) of this project if a discount rate of 15% is used?

- a) +£58.8k
- b) -£60.8k
- c) +£240k
- d) +460.8k