
Main Examination period 2024 – January – Semester A

MTH6151 /MTH6151P: Partial Differential
Equations Solutions

Comments on questions:

• 1(a) is a test of concept-understanding based on the lectures.

• 1(b) is a variant of lecture notes examples.

• 1(c) is similar to problem set questions.

• 1(d) is a verification of basic definitions of heat equations.

• 2 is similar to problem set questions.

• 3(a) and 3(b) are both variants of lecture notes examples.

• 4(a) is a test of basic concepts.

• 4(b) is a test of understanding of the general solutions of Laplace equations, may
require some good understanding of the solutions’ structure.

• 4(c) is a test of students’ ability to apply the right properties of harmonic
functions

• 5(a) is a test of computation of derivatives and verifying a function satisfying heat
equations.

• 5(b) is similar to lecture notes examples.
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Question 1 [26 marks].

(a) For each of the following equations, write down the order of the equation,
determine whether each of them is linear or non-linear, and say whether they are
homogeneous or inhomogeneous.

(i) ex∆U − y2024Uxxy = 0.

(ii) (1 + U2
x)U − UxUy = 0. [6]

Solution:

(i) This is a 3rd order, linear, homogeneous equation.

(ii)This is a 1st order, non-linear, homogeneous equation.

(b) Find the general solutions U(x, t) for the PDE

Uxx − 5Uxt + 4Utt = 0.

[10]

Solution:

First, we can factor the equation as

(
∂

∂x
− ∂

∂t
)(

∂

∂x
− 4

∂

∂t
)U = 0.

Denote by W = ( ∂
∂x

− 4 ∂
∂t
)U , we then get 2 PDEs:

(
∂

∂x
− ∂

∂t
)W = 0 (1)

(
∂

∂x
− 4

∂

∂t
)U = W (2)

Solve (1) as a first order linear PDE using either characteristics or change of
coordinates, we get

W (x, t) = f(x+ t).

The characteristic lines for equation (2) is t = −4x+ C, and along the
characteristic lines, the PDE becomes an ODE

d

dx
U(x, t(x)) = Ux − 4Ut = f(x+ t).

Integrate both sides, we get

U(x, t) = F (x+ t) +G(C).

Using the characteristic equation C = 4x+ t, we get the general solutions

U(x, t) = F (x+ t) +G(4x+ t),

for any F,G.
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(c) Consider the following 2nd order PDE,

Uxx + 2Uxy + 4Ux = 0.

(i) Write down its principal part and then determine the type (elliptic, parabolic
or hyperbolic).

(ii) Change the principal part of the above equation to a canonical form (i.e.
without cross-derivatives).

[6]

Solution:

(i) The principal part is Uxx + 2Uxy. 1
2 − 0 > 0 and thus the equation is

hyperbolic.

(ii) Using the change of variables x′ = x, y′ = −x+ y, we get the principal part
becomes Ux′x′ − Uy′y′ .

(d) Find all possible values of a, b, c so that U(x, t) = ax2 + bt+ ct2 solves the heat
equation

Ut − κUxx = 0,κ > 0.

[4]

Solution:

Plug into the equation, we get (b+ 2ct)− κ · 2a = 0 for any t.

Thus we must have c = 0 and b = 2κa.
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Question 2 [20 marks].

(a) Consider the following eigenvalue problem:

X ′′ + λX = 0

X ′(0) = 0, X(π) = 0.

(i) Show that all the eigenvalues satisfy λ > 0.

(ii) Find all eigenvalues and eigenfunctions. [8]

Solution:

Multiply both sides by X and do integration by parts, we get∫ π

0

[X ·X ′′ + λX2] = 0

X ·X ′|π0 −
∫ π

0

(X ′)2 + λ

∫ π

0

X2 = 0.

The boundary conditions imply X ·X ′|π0 = 0, and thus λ > 0.

The solution to the eigenvalue problem is X(x) = c1 cos
√
λx+ c2 sin

√
λx. It’s

derivative is X ′(x) = −c1
√
λ sin

√
λx+ c2

√
λ cos

√
λx.

The first boundary condition implies 0 = X ′(0) = c2
√
λ, so c2 = 0.

The second boundary condition then implies c1 cos
√
λπ = 0, which forces√

λπ = π
2
+ nπ, for n = 1, 2 . . . .

We get the eigenvalues λn = (1
2
+ n)2 and the eigenfunctions Xn = cos[(1

2
+ nx)].

(b) Solve the following wave equation with mixed boundary conditions on an interval.
(You can make use of the results obtained in (a).)

Utt − c2Uxx = 0

Ux(0, t) = 0, U(π, t) = 0

U(x, 0) = 0, Ut(x, 0) = 6c · cos(3
2
x).

[12]

Solution:
First we consider solutions of the form U(x, t) = X(x)T (t) and get the equation

T̈

c2T
=

X ′′

X
= −λ.

The initial conditions give the eigenvalue problem in (a)

X ′′ + λX = 0

X ′(0) = 0, X(π) = 0.

We get the eigenvalues λn = (1
2
+ n)2 and the eigenfunctions Xn = cos[(1

2
+ nx)].
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Knowing λn, we can solve for T using
. . . T + λc2T = 0 and get

Tn = an cos[(
1

2
+ n)ct] + bn sin[(

1

2
+ n)ct].

the general solutions are

U(x, t) =
∞∑
n=1

Xn(x)Tn(t)

=
∞∑
n=1

an cos[(
1

2
+ nx)] cos[(

1

2
+ n)ct] +

∞∑
n=1

bn cos[(
1

2
+ nx)] sin[(

1

2
+ n)ct].

Differentiate it we get

Ut(x, t) =
∞∑
n=1

−an · cos[(
1

2
+ nx)] sin[(

1

2
+ n)ct] +

∞∑
n=1

bn · (
1

2
+ n)c cos[(

1

2
+ nx)] cos[(

1

2
+ n)ct].

The first initial value tells us an = 0 for any n.
The second initial value tells us 6c · cos 3x

2
=
∑∞

n=1 bn · (
1
2
+ n)c cos[(1

2
+ nx)].

We then see bn = 0 for any n ̸= 1 and b1 =
6c
3
2
c
= c.

So the solution is

U(x, t) = 4 cos
3x

2
sin

3ct

2
.

© Queen Mary University of London (2024) Continue to next page



MTH6151 /MTH6151P (2024) Page 6

Question 3 [16 marks].

(a) Solve the inhomogeneous 1st order equation

Ux − Ut = cos t

U(x, 0) = 0.

[8]

Solution:

The characteristic lines are t = −x+ C. Along the characteristic lines, the PDE
become and ODE

d

dx
U(x, t(x)) = cos t.

Using the characteristic equation, we get t = −x+ C and thus dU
dx

= cos(−x+ C).

Integrate it we get U(x, t) = − sin(−x+ C) + f(C). Plug back in the
characteristic equations C = t+ x we get the solution

U(x, t) = − sin t+ f(t+ x).

Next, using U(x, 0) = 0, we get − sin 0 + f(0 + x) = 0, namely f(x) ≡ 0. So the
solution to this PDE is

U(x, t) = − sin t.

(b) Solve the inhomogeneous wave equation on the real line

Utt − c2Uxx = sinx, x ∈ R
U(x, 0) = 0, Ut(x, 0) = 0.

Explain what theory you are using and show your full computations. [8]

Solution:

Using the Duhamel’s principle for inhomogeneous wave equations, we get

U(x, t) =
1

2c

∫ t

0

∫ x+ct−cs

x−ct+cs

sin rdrds

=
1

2c

∫ t

0

[− cos(x+ ct− cs) + cos(x− ct+ cs)]ds

=
1

2c
[− sin(x+ ct− cs)]

1

−c
|t0 +

1

2c
[sin(x− ct+ cs)]

1

c
|t0

=
1

2c2
sinx− 1

2c2
sin(x+ ct) +

1

2c2
sinx− 1

2c2
sin(x− ct)

=
1

c2
sinx− 1

2c2
[sin(x+ ct) + sin(x− ct)]
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Question 4 [20 marks].

(a) What form does the Laplace equation take in polar coordinates (r, θ)? [2]

Solution:

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂θ2
.

(b) Let (r, θ) denote the usual polar coordinates. Show that if U(r, θ) is a harmonic
function, then so is V (r, θ) = U(1

r
,−θ). [6]

Solution:

If U is harmonic, then it must be of the form of the general solution in polar
coordinates

U(r, θ) = (C0 +D0 ln r) +
∞∑

m=1

(
Cmr

m +
Dm

rm

)
(Am cosmθ +Bm sinmθ).

And thus

V (r, θ) = U(
1

r
,−θ)

=
(
C0 +D0 ln(r

−1)
)
+

∞∑
m=1

(
Cmr

−m +
Dm

r−m

)
(Am cos(−mθ) +Bm sin(−mθ))

=
(
C0 + D̂0 ln r

)
+

∞∑
m=1

(
Ĉmr

m +
D̂m

rm

)
(Âm cosmθ + B̂m sinmθ),

where D̂0 = −D0, and Ĉm = Dm, D̂m = Cm, Âm = Am, B̂m = −Bm for any
m = 1, 2 . . . .

So U(1
r
,−θ) also satisfies the form of general solutions to Laplace equations in

polar coordinates and thus is harmonic.

(c) Suppose that U is a solution to the Laplace equation in the disk Ω = {r ≤ 1} and
that U(1, θ) = 5− sin2 θ.

(i) Without finding the solution to the equation, compute the value of U at the
origin – i.e. at r = 0.

(ii) Without finding the solution to the equation, determine the location of the
maxima and minima of U in Ω.

(Hint: sin2 θ = 1−cos 2θ
2

.) [12]

Solution:

(i) By the mean value theorem, the value at the origin is equal to the average on
the boundary

U(0) =
1

2π

∫ 2π

0

5− sin2 θdθ =
1

2π

∫ 2π

0

(5− 1

2
)dθ +

1

2π

∫ 2π

0

cos 2θ

2
dθ =

9

2
.
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(ii) By the maximum principle, the maximum and minimum value in the disk all
happen at the boundary. And at the boundary, we see
U(1, θ) = 5− sin2 θ = 9

2
+ cos 2θ

2
.

The maximum happens at the polar coordinates (1, 0) and (1, π) with values
9
2
+ 1

2
= 5.

The minimum happens at the polar coordinates (1, π
2
) and (1, 3π

2
) with values

9
2
− 1

2
= 4.
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Question 5 [18 marks].

(a) Show that V (x, t) = π −
∫ x√

4κt

0 e−s2ds is a solution to the heat equation

Vt = κVxx, x ∈ R.

[6]

Solution:

We compute the derivatives:

Vx = −e−
x2

4κt · 1√
4κt

Vxx = e−
x2

4κt · x

2κt ·
√
4κt

Vt = −e−
x2

4κt · −1

2

x
√
4κ · t 3

2

.

Thus Vt = κVxx and the heat equation is satisfied.

(b) Suppose U solves the heat equation on the real line

Ut = 4Uxx, x ∈ R

with initial value

U(x, 0) = f(x) =

{
4, x ≤ 0

2, x > 0.

(i) Use the Fourier-Poisson formula to give an explicit expression for the solution
U .

(ii) Describe the qualitative behaviour of U in this case as t → ∞ and plot out
the solution at several instants of time to explain your answer. What is the limit
of U as t → ∞?

[12]

Solution:

(i) Using the Fourier-Poisson formula, we get

U(x, t) =

∫ ∞

−∞

e−
(x−y)2

4κt

√
4κπt

f(y)dy

= 2

∫ ∞

0

e−
(x−y)2

4κt

√
4κπt

dy + 4

∫ 0

−∞

e−
(x−y)2

4κt

√
4κπt

dy.
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By a change of variables s = x−y√
4κt ⇒ dy = −

√
4κtds, we get

U(x, t) = −2

∫ −∞

x√
4κt

e−s2ds− 4

∫ x√
4κt

∞
e−s2ds

= 2

∫ x√
4κt

−∞
e−s2ds+ 4

∫ ∞

x√
4κt

e−s2ds

= 2

∫ ∞

−∞
e−s2ds+ 2

∫ ∞

x√
4κt

e−s2ds

= 2

∫ ∞

−∞
e−s2ds+ 2

∫ ∞

0

e−s2ds− 2

∫ x√
4κt

0

e−s2ds

= 3− 2

∫ x√
4κt

0

e−s2ds

And as t → ∞, we see U(x, t) → 3.

The plot is as follows

End of Paper.
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