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MTH6151 / MTH6151P: Partial Differential
Equations Solutions

Comments on questions:
e 1(a) is a test of concept-understanding based on the lectures.
e 1(b) is a variant of lecture notes examples.
e 1(c) is similar to problem set questions.
e 1(d) is a verification of basic definitions of heat equations.
e 2 is similar to problem set questions.
e 3(a) and 3(b) are both variants of lecture notes examples.

e 4(a) is a test of basic concepts.

e 4(b) is a test of understanding of the general solutions of Laplace equations, may
require some good understanding of the solutions’ structure.

e 4(c) is a test of students’ ability to apply the right properties of harmonic
functions

e 5(a) is a test of computation of derivatives and verifying a function satisfying heat
equations.

e 5(b) is similar to lecture notes examples.
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Question 1 [26 marks].

(a) For each of the following equations, write down the order of the equation,
determine whether each of them is linear or non-linear, and say whether they are
homogeneous or inhomogeneous.

(i) e"AU — y****U,,,, = 0.

(i) (14+U2)U - U,U, = 0. 6]
Solution:

(i) This is a 3rd order, linear, homogeneous equation.

(ii)This is a 1st order, non-linear, homogeneous equation.

(b) Find the general solutions U(x,t) for the PDE
Umac - 5Ua;t ‘l— 4Utt - 0

[10]
Solution:

First, we can factor the equation as

o 9,0 0
(s~ 505, 45
Denote by W = (£ — 42)U, we then get 2 PDEs:

U=0.

(- Dyw=o
L ady=-w ()

Solve (1) as a first order linear PDE using either characteristics or change of
coordinates, we get

W(x,t) = f(a+1).

The characteristic lines for equation (2) is t = —4x + C, and along the
characteristic lines, the PDE becomes an ODE

d
—U(z,t(x)) = Uy — 4V, = f(z +1).
dx
Integrate both sides, we get
U(z,t) = F(z+1t)+G(O).
Using the characteristic equation C' = 4x + t, we get the general solutions

Uz, t) = F(x +t) + G(dx + 1),

for any F), G.
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(c) Consider the following 2nd order PDE,

Upa + 2U,y + 4U, = 0.

(i) Write down its principal part and then determine the type (elliptic, parabolic
or hyperbolic).

(ii) Change the principal part of the above equation to a canonical form (i.e.
without cross-derivatives).

[6]
Solution:
(i) The principal part is Uy, + 2U,,. 1> — 0 > 0 and thus the equation is
hyperbolic.
(ii) Using the change of variables 2’ = x,y’ = —x + y, we get the principal part
becomes Uy — Uyryyr.
(d) Find all possible values of a,b, ¢ so that U(z,t) = ax® + bt + ct* solves the heat
equation
Ui — U, =0, > 0.
[4]
Solution:

Plug into the equation, we get (b+ 2ct) — s - 2a = 0 for any t.

Thus we must have ¢ = 0 and b = 2xza.

(© Queen Mary University of London (2024) Continue to next page



MTH6151 / MTH6151P (2024) Page 4

Question 2 [20 marks].

(a) Consider the following eigenvalue problem:

X" +AX =0
X'(0)=0,X(m) = 0.
(i) Show that all the eigenvalues satisfy A > 0.
(ii) Find all eigenvalues and eigenfunctions. 8]

Solution:

Multiply both sides by X and do integration by parts, we get
/ (X - X"+ X% =0
0
X-X’|g—/ (X’)2+)\/ X% =0.
0 0

The boundary conditions imply X - X'|J = 0, and thus A > 0.

The solution to the eigenvalue problem is X (z) = ¢1 cos VAz + o sin vz, It’s
derivative is X'(z) = —c;vV/Asin VAz + ¢/ cos VAz.

The first boundary condition implies 0 = X’(0) = c3V/\, 50 ¢3 = 0.

The second boundary condition then implies ¢; cos vAm = 0, which forces
\/Xﬂzqumr, forn=1,2....

We get the eigenvalues A, = (3 + n)? and the eigenfunctions X,, = cos[(3 + nz)].

(b) Solve the following wave equation with mixed boundary conditions on an interval.
(You can make use of the results obtained in (a).)

Utt — CQU:m; =0
U.(0,t) =0,U(m,t) =0
U(z,0) = 0,U(x,0) = 6¢ - cos(3x).

[12]

Solution:
First we consider solutions of the form U(z,t) = X (z)7T'(t) and get the equation

T X"

ar - x -

The initial conditions give the eigenvalue problem in (a)

X"+ X =0
X'(0) = 0, X(r) = 0.

We get the eigenvalues A\, = (3 + n)? and the eigenfunctions X, = cos[(3 + na)].
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Knowing \,, we can solve for T using "*. T + A\¢*T = 0 and get
1 1
T, = a, cos[(§ +n)ct] + b, 8111[(5 + n)ct].

the general solutions are
Ulz,t) =Y Xu(2)T,(t)
n=1
= i a cos[(l + nx)] cos[(l +n)ct] + i b COS[(l + nx)] sin[(1 + n)ct].
— " 2 2 — " 2 2

Differentiate it we get

Ui(z,t) = z; —ay, - cos[(% + nx)] sin[(% +n)ct] + z; by, - (% + n)ccos[(% + nx)] COS[(% + n)ct].

The first initial value tells us a,, = 0 for any n.
The second initial value tells us 6c - cos 2 = >~ b, - (3 + n)ccos|(3 + nz)].

Wethenseebn:()foranyn#landblzg—i:c.
2
So the solution is

3 3ct
Uz, t) = 4cos§sin70.
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Question 3 [16 marks].

(a) Solve the inhomogeneous 1st order equation

U, — U; = cost
U(z,0) =0.
8]
Solution:
The characteristic lines are t = —x + C. Along the characteristic lines, the PDE
become and ODE
d U(x,t(z)) = cost
—U(z,t(x)) = .
dr
Using the characteristic equation, we get ¢t = —z + C and thus ¥ = cos(—z + C).
Integrate it we get U(x,t) = —sin(—z + C') + f(C'). Plug back in the
characteristic equations C' =t + = we get the solution
U(x,t) = —sint + f(t + x).
Next, using U(z,0) = 0, we get —sin0+ f(0+ z) = 0, namely f(z) = 0. So the
solution to this PDE is
U(z,t) = —sint.
(b) Solve the inhomogeneous wave equation on the real line
Uy — U, = sin r,xr €R
U(x,0) = 0,U(z,0) =0.
Explain what theory you are using and show your full computations. 8]

Solution:

Using the Duhamel’s principle for inhomogeneous wave equations, we get

1 t xr+ct—cs

U(z,t) :2—/ / sinrdrds
¢ Jo xr—ct+cs
1 t

[—cos(x + ct — ¢s) + cos(x — ct + cs)|ds

1 1 1 1

:%[— sin(z + ¢t — cs)]_—c|6 + %[sin(:c —ct+ cs)}gﬁ)
1. 1 . 1 I

=52 5%~ 55 sin(x + ct) + 52 ST~ o5 sin(x — ct)
1

=3 sinz — ﬁ[sin(fv + ct) + sin(z — ct)]
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Question 4 [20 marks].

(a) What form does the Laplace equation take in polar coordinates (r,)? 2]
Solution:

0*U 10U  10*U

AU = — —_—
v or? T ror +7“2 002

(b) Let (r,60) denote the usual polar coordinates. Show that if U(r, 6) is a harmonic
function, then so is V(r,0) = U(%, —0). 6]

Solution:

If U is harmonic, then it must be of the form of the general solution in polar
coordinates

U(r,0) = (Co+ Dylnr) + Z (C’mrm + %) (A, cosmb + By, sinm@).

m=1
And thus
1
V(r,0) = U(;, —0)
_ D,, )
= (Co+ Doln(r™")) + Z ( A —m> (A, cos(—mb) + By, sin(—m#))
) > Dy,
— (Cg—l—Dolnr> Z ( ™ +—) (A cosmb + B,, sinm#),

where D = —Dy, and C’m =D, D, = C’m,flm = A,,, B,, = —B,, for any
=1,2.

So U (l —«9) also satisfies the form of general solutions to Laplace equations in

polar coordinates and thus is harmonic.

(c) Suppose that U is a solution to the Laplace equation in the disk @ = {r < 1} and
that U(1,0) = 5 — sin? 0.
(i) Without finding the solution to the equation, compute the value of U at the
origin — i.e. at r = 0.
(ii) Without finding the solution to the equation, determine the location of the

maxima and minima of U in §).

(Hint: sin®§ = =20 )) [12]

Solution:

(i) By the mean value theorem, the value at the origin is equal to the average on
the boundary

1 [ ) 1 [ 1 1 [*" cos20 9
= —sin?Adf = — — 2o+ — g = =
u) 27r/0 b~ sin 27r/0 (6—3)d0+ 27r/ 2 2
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(ii) By the maximum principle, the maximum and minimum value in the disk all
happen at the boundary. And at the boundary, we see
U(1,6) =5 —sin®0 = § + <52,

The maximum happens at the polar coordinates (1,0) and (1, 7) with values

9 1 _
8415

The minimum happens at the polar coordinates (1, %) and (1, 37”) with values
9_1_14y

2 7 2 :
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Question 5 [18 marks].

(a) Show that V(x,t) =7 — foﬁ e~*"ds is a solution to the heat equation

V, = 5V, z € R.

Solution:

We compute the derivatives:

2 1

At
T
2a¢t - /4t

2 —1 T

V g —eim .
! 2 \/4%-75%

Thus V; = »V,, and the heat equation is satisfied.

22

‘/'mc:@_m .

(b) Suppose U solves the heat equation on the real line
U =4U,,,x € R
with initial value

4,2 <0
2,z > 0.

U(ﬂf,O):f(x)Z{

(i) Use the Fourier-Poisson formula to give an explicit expression for the solution
U.

(i) Describe the qualitative behaviour of U in this case as t — oo and plot out
the solution at several instants of time to explain your answer. What is the limit
of U as t — 00?

[12]
Solution:

(i) Using the Fourier-Poisson formula, we get

(z—y)?
o0 € dxt

=/ Z%Eﬂw@

_(a=y)?

Ul(z,t)

_ (z—y)?

2/006 Dot p +4/0 e Dt J
B o VA4axrt 4 —oo VATt Y
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By a change of variables s = =% = dy = —+/4xtds, we get

Vst

oo \/%
Uz, t) = —2/ e ds — 4/ e ds

Vit >

o
= 2/ o 6_52d3+4/ e ds

4t

= 2/ e ds +2 e ds

T

Vit
T

o0 2 o0 2 43t
:2/ esd3+2/ esds—2/
oo 0 0

x

4t 2
:3—2/ e % ds
0

And as t — oo, we see U(z,t) — 3.

—00

The plot is as follows

L=
L=
\
(
£ lwae,
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End of Paper.
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