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Question 1 [26 marks].

(a) For each of the following equations, write down the order of the equation,
determine whether each of them is linear or non-linear, and say whether they are
homogeneous or inhomogeneous.

(i) ex∆U − y2024Uxxy = 0.

(ii) (1 + U2
x)U − UxUy = 0. [6]

(b) Find the general solutions U(x, t) for the PDE

Uxx − 5Uxt + 4Utt = 0.

[10]

(c) Consider the following 2nd order PDE,

Uxx + 2Uxy + 4Ux = 0.

(i) Write down its principal part and then determine the type (elliptic, parabolic
or hyperbolic).

(ii) Change the principal part of the above equation to a canonical form (i.e.
without cross-derivatives).

[6]

(d) Find all possible values of a, b, c so that U(x, t) = ax2 + bt+ ct2 solves the heat
equation

Ut − κUxx = 0,κ > 0.

[4]
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Question 2 [20 marks].

(a) Consider the following eigenvalue problem:

X ′′ + λX = 0

X ′(0) = 0, X(π) = 0.

(i) Show that all the eigenvalues satisfy λ > 0.

(ii) Find all eigenvalues and eigenfunctions. [8]

(b) Solve the following wave equation with mixed boundary conditions on an interval.
(You can make use of the results obtained in (a).)

Utt − c2Uxx = 0

Ux(0, t) = 0, U(π, t) = 0

U(x, 0) = 0, Ut(x, 0) = 6c · cos(3
2
x).

[12]
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Question 3 [16 marks].

(a) Solve the inhomogeneous 1st order equation

Ux − Ut = cos t

U(x, 0) = 0.

[8]

(b) Solve the inhomogeneous wave equation on the real line

Utt − c2Uxx = sinx, x ∈ R
U(x, 0) = 0, Ut(x, 0) = 0.

Explain what theory you are using and show your full computations. [8]
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Question 4 [20 marks].

(a) What form does the Laplace equation take in polar coordinates (r, θ)? [2]

(b) Let (r, θ) denote the usual polar coordinates. Show that if U(r, θ) is a harmonic
function, then so is V (r, θ) = U(1

r
,−θ). [6]

(c) Suppose that U is a solution to the Laplace equation in the disk Ω = {r ≤ 1} and
that U(1, θ) = 5− sin2 θ.

(i) Without finding the solution to the equation, compute the value of U at the
origin – i.e. at r = 0.

(ii) Without finding the solution to the equation, determine the location of the
maxima and minima of U in Ω.

(Hint: sin2 θ = 1−cos 2θ
2

.) [12]
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Question 5 [18 marks].

(a) Show that V (x, t) = π −
∫ x√

4κt

0 e−s2ds is a solution to the heat equation

Vt = κVxx, x ∈ R.

[6]

(b) Suppose U solves the heat equation on the real line

Ut = 4Uxx, x ∈ R

with initial value

U(x, 0) =

{
4, x ≤ 0

2, x > 0.

(i) Use the Fourier-Poisson formula to give an explicit expression for the solution
U .

(ii) Describe the qualitative behaviour of U in this case as t → ∞ and plot out
the solution at several instants of time to explain your answer. What is the limit
of U as t → ∞?

[12]

End of Paper.
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