
WEEK 10 NOTES

1. THE HEAT EQUATION ON THE REAL LINE

In this section we will see how to solve the problem

Ut = κUxx, x ∈ R, t > 0,

U(x, 0) = f(x).

That is, we want to solve the heat equation on the real line given that we know the initial
form of U .

In order to solve this problem we will need some further assumptions on the solution
U(x, t) and the initial data f(x). In particular, we want U(x, t) to be absolutely integrable
—that is,

(1.1)
∫ ∞
−∞
|U(x, t)|dx <∞.

Also, we require that U and Ux go to zero at infinity —that is,

U(x, t), Ux(x, t) −→ 0, x→ ±∞.

Note. Observe that to have condition (1.1) one needs U(x, t) to go to zero at infinity.

We also require f to be absolutely integrable:∫ ∞
−∞

f(x)dx <∞.

Example 1.1. Functions which are absolutely integrable are special —i.e. not all functions
are absolutely integrable. Some examples are:

(i) f(x) = sinx. One then has that∫ ∞
−∞
| sinx|dx =∞.

That is, sinx is not integrable.
(ii) Let

f(x) =
1

1 + x2
.

One has that∫ ∞
−∞

∣∣∣∣ 1

1 + x2

∣∣∣∣ dx =

∫ ∞
−∞

1

1 + x2
dx = arctanx

∣∣∣∣∞
−∞

=
π

2
−
(
− π

2

)
= π <∞.

Thus f(x) = 1/(1 + x2) is absolutely integrable.
(iii) Let f(x) = e−x

2

. From Calculus we know that∫ ∞
−∞

e−x
2

dx =
√
π <∞,

so, again, absolutely integrable.

For solutions to the heat equations with finite total heat, we have the following property.
1
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Lemma 1.2. Let U(x, t) be a solution to the heat equation which is absolutely integrable
and satisfying Ux(x, t)→ 0 as x→ ±∞. Then∫ ∞

−∞
U(x, t)dx

is constant for t ≥ 0.

Proof. To see this integrate the heat equation over the real line:∫ ∞
−∞

Ut(x, t)dx = κ
∫ ∞
−∞

Uxx(x, t)dx.

This can be rewritten, using the Fundamental Theorem of Calculus as

d

dt

∫ ∞
−∞

U(x, t)dx = κUx(x, t)
∣∣∣∣∞
−∞

= 0.

The last equality follows from the requirement that Ux goes to zero at infinity. Thus, the
integral ∫ ∞

−∞
U(x, t)dx

does not depend on t —that is, it is constant. �

Let’s first consider the following very special solutions of heat equations. (Indeed, it
will help us generate all the other solutions).

Theorem 1.3. The function

U(x, t) =
e−

x2

4κt
√
4κπt

solves the heat equation Ut = κUxx on the real line.

Proof. We compute

∂tU =
e−

x2

4κt
√
4κπ

· −1
2t

3
2

+
e−

x2

4κt
√
4κπt

· x
2

4κt2

=
e−

x2

4κt
√
4κπt

· [− 1

2t
+

x2

4κt2
].

And

∂xxU =∂x[
e−

x2

4κt
√
4κπ

· −x
2κt

]

=
e−

x2

4κt
√
4κπ

· x2

4κ2t2
+
e−

x2

4κt
√
4κπ

· −1
2κt

=
e−

x2

4κt
√
4κπ

[− x

2κt
+

x2

4κ2t2
].

Thus
Ut = κUxx.

�
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This solution is known as the heat kernel or fundamental solution of the heat equation.
We denote it by:

K(x, t) =
e−

x2

4κt
√
4κπt

.

We note the following properties:

(i) By construction K(x, t) satisfies the heat equation. That is,

Kt = κKxx, x ∈ R, t > 0.

(ii) The heat kernel is an even function —that is, K(x, t) = K(−x, t).
(iii) K(x, t) is a smooth function (i.e. C∞) for x ∈ R, t > 0.
(iv) One has that ∫ ∞

−∞
K(x, t)dx = 1, t ≥ 0.

(v) For x 6= 0 one has that

K(x, t)→ 0, as t→ 0+,

while for x = 0 one has that

K(0, t)→∞, as t→ 0+.

(vi) For any x ∈ R, one has

K(x, t)→ 0, as t→∞

Remark 1.4. Properties (i)-(iv) above, follow from the construction of the heat Kernel given
in the previous section. Only property (v) requires further work. If x 6= 0 then to compute
the limit it is enough to consider

e−1/t√
t

=
1√
te1/t

−→ 0 as t→ 0+,

given that e1/t →∞ and recalling that the exponential grows faster than any power of t so
it dominates

√
t. For x = 0 one has that

K(0, t) =
e0√
4πκt

=
1√
4πκt

−→∞ as t→ 0+.

Note. Property (v) together with (iv) show that K(x, 0) is a very special object —in fact,
it turns out that K(x, 0) cannot be a function. It is a more general type of object known as
generalised function or distribution.

2. DIRAC’S DELTA FUNCTION

In order to better understand the properties of the heat Kernel at t = 0 consider the
sequence of functions

{fλ(x)} =

e−
x2

λ2

λ
√
π

 , λ ∈ R+.

Graphs of the functions fλ for various values of λ can be seen in the figure below:
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Observe that as λ → 0, the Gaussian bells become increasingly peaked. One can then
check that:

(i) if x 6= 0 then fλ(x)→ 0 as λ→ 0;
(ii) if x = 0 then fλ(0)→∞ as λ→ 0;

(iii) moreover, one has that ∫ ∞
−∞

fλ(x)dx = 1

for all λ so that, in particular, one has

lim
λ→0

∫ ∞
−∞

fλ(x)dx = 1.

The limit of the family {fλ} is not a proper function. However, one can for-
mally write

δ(x) ≡ lim
λ→0

fλ(x) = lim
λ→0

e−x
2/λ2

√
π

.

This is the so-called Dirac’s delta “function”.

Note. There is a branch of mathematics known as distribution theory aimed at
making sense of objects like Dirac’s delta.

Definition 2.1. Dirac’s delta, δ, is defined by the conditions:
(i) δ(x) = 0 for x 6= 0;

(ii) δ(0) =∞;
(iii) for any a < 0 < b one has∫ b

a

δ(x) = 1.

Note. From the previous discussion it follows that

K(x, 0) = δ(x).

In terms of diffusion processes, δ(x) describes an infinitesimally small “drop” of ink con-
centrated at the origin. This “drop” then spreads with time.
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3. THE GENERAL SOLUTION TO THE HEAT EQUATION ON THE REAL LINE

The heat kernel is the basic building block to obtain the general solution to the heat
equation on the real line.

We begin by observing the following property:

Lemma 3.1. If U(x, t) is a solution to

Ut = κUxx
then

(3.1) V (x, t) ≡
∫ ∞
−∞

U(x− y, t)g(y)dy

is also a solution for any function g —as long as the integral converges.

Proof. This follows by direct computation:

Vt(x, t) =
∂

∂t

∫ ∞
−∞

U(x− y, t)g(y)dy =

∫ ∞
−∞

Ut(x− y, t)g(y)dy,

Vxx(x, t) =
∂2

∂x2

∫ ∞
−∞

U(x− y, t)g(y)dy =

∫ ∞
−∞

Uxx(x− y, t)g(y)dy.

Hence,

Vt(x, t)− κVxx(x, t) =
∫ ∞
−∞

(
Ut(x− y, t)− κUxx(x− y, t)

)
g(y)dy = 0.

�

Note. The operation given by (3.1) is called the convolution of U and g. This is sometimes
denoted as

V (x, t) = (U ∗ g)(x, t).

Now, consider the problem

Ut = κUxx, x ∈ R, t > 0,(3.2)
U(x, 0) = f(x).(3.3)

Claim: the (unique) solution to (3.2)-(3.3) is given by

U(x, t) =

∫ ∞
−∞

K(x− y, t)f(y)dy,

with K denoting the heat kernel. Or, more explicitly,

(3.4) U(x, t) =

∫ ∞
−∞

e−
(x−y)2

4κt
√
4κπt

f(y)dy.

The latter is known as the Fourier-Poisson formula.

As a consequence of Lemma 3.1, and given thatK(x, t) satisfies the heat equation, then
U(x, t) as defined by (3.4) is a solution to the heat equation.

Note. To fully address the claim it is only necessary to verify that U(x, 0) = f(x).
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3.0.1. Some auxiliary calculations. In the following it will be convenient to consider the
function

(3.5) Q(x, t) ≡ 1

2
+

1√
π

∫ x/
√
4κt

0

e−s
2

ds, t > 0.

Observe that

Qx(x, t) =
1√
π

d

dx

(
x√
4κt

)
e−

x2

4κt

=
e−

x2

4κt
√
4πκt

= K(x, t).

Thus, Q(x, t) is the antiderivative (with respect to x) of K(x, t).

Next, we consider the limit of Q(x, t) as t→ 0+. There are 2 cases:
(i) x > 0. Here we have

lim
t→0+

Q(x, t) =
1

2
+

1√
π

∫ ∞
0

e−s
2

ds =
1

2
+

1√
π

√
π

2
= 1.

(ii) x < 0. Here one has

lim
t→0+

Q(x, t) =
1

2
+

1√
π

∫ ∞
0

e−s
2

ds =
1

2
− 1√

π

∫ 0

−∞
e−s

2

ds =
1

2
− 1

2
= 0.

Hence, one concludes that

lim
t→0+

Q(x, t) =

{
0 x < 0
1 x > 0

≡ H(x).

The function H defined above is called Heaviside’s step function.

Note. As Q is the antiderivative of K it follows from the above discussion that

H ′(x) = δ(x).

That is, Dirac’s delta is the derivative of Heaviside’s step function.

3.0.2. Concluding the main computation. Using the properties of Q as discussed in the
previous subsection one has that

U(x, t) =

∫ ∞
−∞

K(x− y, t)f(y)dy

=

∫ ∞
−∞

Qx(x− y, t)f(y)dy

= −
∫ ∞
−∞

Qy(x− y, t)f(y)dy

= −Q(x− y, t)f(y)
∣∣∣∣∞
−∞

+

∫ ∞
−∞

Q(x− y, t)f ′(y)dy,

where in the third line one makes use of the chain rule to change the x-derivative to a
y-derivative and in the fourth line one employs integration by parts to pass the derivative
from Q to f . Now, as K(x− y, t) decays very fast to 0 as |x− y| → ∞ it follows that

−Q(x− y, t)f(y)
∣∣∣∣∞
−∞

= 0.
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Hence,

U(x, t) =

∫ ∞
−∞

Q(x− y, t)f ′(y)dy.

We make use of this expression to compute the limit t→ 0+:

U(x, 0+) =

∫ ∞
−∞

Q(x− y, 0+)f ′(y)dy =

∫ ∞
−∞

H(x− y)f ′(y)dy

=

∫ x

−∞
f ′(y)dy = f(y)

∣∣∣∣x
−∞

= f(x),

where in the last line it has been assumed that f(x)→ 0 as x→ −∞.

We summarise the previous discussion in the following:

Proposition 3.2. For t > 0, the Fourier-Poisson formula

U(x, t) =

∫ ∞
−∞

e−
(x−y)2

4κt
√
4κπt

f(y)dy

gives the (unique) solution to{
Ut(x, t) = κUxx(x, t), x ∈ R, t > 0,

U(x, 0) = f(x).

3.1. Some examples. In this section we discuss some examples of computation involving
the Fourier-Poisson formula.

Example 3.3. Analyse the behaviour of the solution U(x, t) given by the Fourier-Poisson
formula in the case

f(x) = H(x) =

{
0 x < 0
1 x > 0

.

In this case one has

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−(x−y)
2/4κtH(y)dy

=
1√
4πκt

∫ ∞
0

e−(x−y)
2/4κtdy

as H(x) 6= 0 only for x > 0. Letting now

s =
x− y√
4κt

=⇒ dy = −
√
4κtds,

one finds that

U(x, t) = −
√
4κt√
4πκt

∫ −∞
x/
√
4κt

e−s
2

ds

=
1√
π

∫ x/
√
4κt

−∞
e−s

2

ds

=
1√
π

∫ 0

−∞
e−s

2

ds+
1√
π

∫ x/
√
4κt

0

e−s
2

ds

=
1

2
+

1√
π

∫ x/
√
4κt

0

e−s
2

ds.
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Thus, observe that, in fact
U(x, t) = Q(x, t).

We now investigate the behaviour of U(x, t) for fixed x as t→∞:

lim
t→∞

U(x, t) =
1

2
+ lim
t→∞

1√
π

∫ x/
√
4κt

0

e−s
2

ds =
1

2
+

1√
π

∫ 0

0

e−s
2

ds =
1

2
,

as x/
√
4κt→ 0 as t→∞.
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Example 3.4. Evaluate the Fourier-Poisson formula in the case

f(x) = e−x.

Substituting the above expression in the formula one obtains

U(x, t) =
1√
4κπt

∫ ∞
−∞

e−(x−y)
2/4κte−ydy.

The exponent in the integral can be rearranged as

− (x− y)2

4κt
− y = −x

2 − 2xy + y2 + 4κty
4κt

= − (y + 2κt− x)2

4κt
+ κt− x.

Hence,

U(x, t) =
1√
4κπt

∫ ∞
−∞

e−
(y+2κt−x)2

4κt +κt−xdy

=
eκt−x√
4κπt

∫ ∞
−∞

e−
(y+2κt−x)2

4κt dy.

Letting

s =
y + 2κt− x√

4κt
=⇒ ds =

dy√
4κt

,

it follows then that

U(x, t) =
eκt−x√
4κπt

∫ ∞
−∞

e−s
2√

4κtds

=
eκt−x√

π

∫ ∞
−∞

e−s
2

ds = eκt−x.
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Observe, in particular, that

U(x, t)→∞, as t→∞.

Thus, the solution does not decay but grows at every point x. Plots of this solution for
various values of t are shown below.
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We conclude the list of examples with one particular solution to the heat equation which
evidences an important property of the heat equation:

Example 3.5. Compute the solution to the heat equation on the real line if the initial
condition is given by

f(x) =
ex

2/4κ
√
4πκ

.

In this case substitution of the initial condition into the Fourier-Poisson formula gives

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt
e
y2

4κ
√
4πκ

dy

=
1

4πκ
√
t

∫ ∞
−∞

e
y2

4κ−
(x−y)2

4κt dy.

The exponent in the integral can be manipulated by completing squares to get

y2

4κ
− (x− y)2

4κt
=

1

4κ

(
y2 − x2

t
− y2

t
+

2xy

t

)
=

1

4κ

((
1− 1

t

)
y2 +

2xy

t
− x2

t

)
=

1

4κ

((
t− 1

t

)(
y2 +

2xy

t− 1
+

x2

(t− 1)2

)
− x2

t
− x2

t(t− 1)

)
=

1

4κ

((
t− 1

t

)(
y +

x

t− 1

)2

− x2

t− 1

)
.
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Hence,

U(x, t) =
1

4πκ
√
t

∫ ∞
−∞

e
1
4κ

(
( t−1

t )(y+ x
t−1 )

2− x2

t−1

)
dy

=
e−

x2

4κ(t−1)

4πκ
√
t

∫ ∞
−∞

e−
1
4κ (

1−t
t )(y+ x

t−1 )
2

dy.

Finally, letting

s =

√
1− t
4κt

(
y +

x

t− 1

)
=⇒ ds =

√
1− t
4κt

dy,

one concludes that

U(x, t) =
e−

x2

4κ(t−1)

4πκ
√
t

√
4κt
1− t

∫ ∞
−∞

e−s
2

ds

=
e

x2

4κ(1−t)

π
√
4κ(1− t)

√
π

=
e

x2

4κ(1−t)√
4κπ(1− t)

.

Observe that

U(x, t) −→∞ as t→ 1.

That is, the solution becomes singular in a finite amount of time! A plot of the solutions
for various values of t is shown below:

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Example 3.6. In this example we suppose the initial date f is a bump function so that
f = 0 for |x| ≥ R0 and |f(x)| ≤ C0. See for example the of a bump function graphed
below.
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f

x

Then by the Fourier-Poisson formula, we get

U(x, t) =
1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt f(y)dy

=
1√
4πκt

∫ R0

−R0

e−
(x−y)2

4κt f(y)dy

≤ 1√
4πκt

· 2R0 · C0

→0, as t→∞.

Here in the second line we used that f = 0 for x ≥ R0 or x ≤ −R0.
We see that after a very long time, the solution to the heat equation tend to zero!

3.2. Invariance properties of the heat equation. An important property of the heat equa-
tion involves the behaviour of its solutions with respect to scalings of the coordinates. More
precisely,

Lemma 3.7. If U(x, t) solves the heat equation then also V (x, t) ≡ U(ax, a2t) also
solves the heat equation.

Proof. Let v = ax, w = a2t. Then, using the chain rule one finds that

Ut(v, w) =
∂w

∂t
Uw(v, w) = a2Uw(v, w),

Ux(v, w) =
∂v

∂x
Uv(v, w) = aUv(v, w),

Uxx(v, w) = a2Uvv(v, w).

Hence,

Ut(ax, a
2t)− κUxx(ax, a2t) = a2

(
Uw(v, w)− κUvv(v, w)

)
= 0.

�


