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Question 1 [24 marks].

(a) Let f : R→ R be defined by f(x) = x3 − 3x2 + 3x.

(i) Determine all fixed points of f . [3]

(ii) Determine, with justification, whether each fixed point is attracting or
repelling. [3]

(iii) Determine the basin of attraction of each attracting fixed point. [3]

(iv) Give an example of an eventually periodic orbit that is not periodic, or
explain why such points do not exist. [3]

(b) Let f : R→ R be defined by f(x) = x+ 1.

(i) Determine, with justification, whether f is topologically conjugate to
g1 : R→ R defined by g1(x) = x+ 2. [3]

(ii) Determine, with justification, whether f is topologically conjugate to
g2 : R→ R defined by g2(x) = x− 1. [3]

(iii) Determine, with justification, whether f is topologically conjugate to
g3 : R→ R defined by g3(x) = −x+ 1. [3]

(iv) Determine, with justification, whether f is topologically conjugate to
g4 : R→ R defined by g4(x) = x2 − 1. [3]

Question 2 [27 marks]. For parameters λ ∈ [0, 1], define fλ : [0, 1]→ [0, 1] by
fλ(x) = λ sin(πx).

(a) Sketch the graphs of the functions f1/4 and f1. [2]

(b) Determine the value λ1 ∈ (0, 1) such that the fixed point 0 is attracting for
λ ∈ [0, λ1) and repelling for λ ∈ (λ1, 1]. [3]

(c) Show that if λ ∈ (λ1, 1] then fλ has a non-zero fixed point. [4]

Henceforth, assume that for λ ∈ (λ1, 1] the non-zero fixed point of fλ is unique, and
denoted by xλ.

(d) Determine the value of λ such that xλ = 1/6. [2]

(e) Determine the value of λ such that xλ = 1/2. [2]

(f) Show that if λ = 4
√

3/9 then xλ = 2/3. [2]

(g) Show that the point 1/6 is eventually periodic for the map f1(x) = sin(πx). [2]

(h) Sketch the graph of f 3
1 , taking care to mark the value of this function at the

points α, β, 1− α, 1− β, where α = 1
π

arcsin(1/6), β = 1
π

arcsin(5/6). [3]

(i) Show that f1 has a point of least period 3. [4]

(j) Determine, with justification, whether f1 has a point of least period 314159. [3]
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Question 3 [25 marks]. Let f : R→ R be defined by

f(x) =



5/6 if x < 0

x+ 5/6 if 0 ≤ x < 1/6

4/3− 2x if 1/6 ≤ x < 2/3

x− 2/3 if 2/3 ≤ x ≤ 1

1/3 if x > 1 .

(a) Sketch the graph of f . [3]

(b) Determine the fixed point p of f . [3]

(c) Determine the orbit under f of the point 0. [3]

(d) Show that if x ∈ (1/3, 2/3), with x 6= p, then there exists N ∈ N such that
fN(x) /∈ (1/3, 2/3). [6]

(e) Show that if x ∈ [0, 1/3] then f(x) ∈ [2/3, 1], and that if x ∈ [2/3, 1] then
f(x) ∈ [0, 1/3]. Use this to deduce that, for all integers n ≥ 0, if x ∈ [0, 1/3] then
f 2n+1(x) ∈ [2/3, 1], and that if x ∈ [2/3, 1] then f 2n+1(x) ∈ [0, 1/3]. [5]

(f) Using (c), (d), and (e), or otherwise, determine the set of n ∈ N such that f has
an n-cycle. [5]

Question 4 [24 marks].

(a) Given an iterated function system in R2 defined by the 4 maps
φ0(x, y) = (x/3, y/3), φ1(x, y) = ((x+ 2)/3, y/3), φ2(x, y) = (x/3, (y + 2)/3),
φ3(x, y) = ((x+ 2)/3, (y + 2)/3), define Φ(A) = ∪3i=0φi(A) for all sets A ⊂ R2, and
let Fk denote Φk([0, 1]2) for k ≥ 0.

(i) Determine the set F1. [3]

(ii) If Fk is expressed as a disjoint union of Nk closed squares, compute the
number Nk. [3]

(iii) What is the common side length of each of the Nk squares whose disjoint
union equals Fk? [3]

(iv) Compute the box dimension of F = ∩∞k=0Fk, being careful to justify your
answer. [5]

(b) If C ⊂ [0, 1] denotes the middle third Cantor set, compute the box dimension of
the set C × [0, 1] = {(x, y) : x ∈ C, y ∈ [0, 1]} ⊂ R2. [5]

(c) (i) For a map f : [0, 1]→ R, how is the set of non-escaping points defined? [2]

(ii) Give an example, with justification, of a map f whose set of non-escaping
points has box dimension strictly smaller than 1/2. [3]

End of Paper.
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