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Definition: Suppose G is a group and X is a set. An action of G on X is a collection
m = (mg|g € G) of functions from X to X such that:
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Group Actions
Lemma: If 7 is an action of G on X, then each 7, is a permutation on X.
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Group Actions
Examples

@ For any X, and a group G we have the trivial action g.x = x for all x v

Sx symmetric group acting on X. Key example. «~
@ GL,(R) acting on R"
© GL(V) actingon V
@ G group; Aut(G) acting on G.
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Group Actions Aelion b€7 Cory. alon
Special case: There is another action on G on itself, blit it's not the regular action!

Definition: For g € G,x € G set gy = gxg 1. Set v4(x) = gxg 1.

This is a group action of G on itself, and it is an=XeTOR By automorphisms:

Vg € Aut(G). We say “x is conjugate to y" if there is g € G such that g, = y.
This is an equivalence relation.

The equivalence classes are called conjugacy classes. Write G/X for the set of
equivalence classes. The class of e is {e}. More generally, the class of x is {x} iff
x € Z(G).

Special Remarks: Why is conjugacy important? Because

(1) The action is by automorphisms, so conjugate elements have identical
group-theoretic properties (same order, conjugate centralizers etc).

(2) These automorphisms are readily available.

In fact, the map g — 7, is a group homomorphism G — Aut(G)



Group Actions
The image of this homomorphism is denoted Inn(G) and called the group of inner
automorphisms. The kernel is exactly Z(G), so by first isomorphism theorem
Inn(G) = G/Z(G). Also, if f € Aut(G) then fovg o™t =ry).
So Inn(G) >Aut(G).
Example: Aut(Z9) = GL4(Z) but all inner automorphisms are trivial (the group is
commutative).

Example: On the other hand, if |X| > 3 then Inn(Sx) = Sx (the center is trivial).
Out(S,) ={e} except that Out(Se) = Co.

Example: For any G, let X be the set of all subgroups of G. Then G acts on X by

conjugation: mg(K) = gKg™". 6‘ _
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Suppose we have an action 7 of G on X. We define a relation = on X by saying that
x =y if there is some g € G such that y = mg(x).

Lemma: = is an equiavalence relation. R%M’w
Proof:
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Group Actions
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Orbits and stabilisers

Definition: Suppose 7 is an action of a group G on a set X. The orbit of 7 are the
equivalence classes under the relation = described above. Given x € X, we write Orb(x) for
the orbit containing x, i.e. -

Orb(x) = {Wg(X) lg € G}
The action  is transitive if there is only one orbit. Write G/X for the set of orbits.

Definition: Suppose 7 is an action of a group G on a set X, and let x € X. The stabiliser
of x is the set (?’ o A 531e
Stab(x) = {ge G| mg( x)—x} ﬁ"o{f

promple:  K:Grx—>X, Fgm= = gm ==
oab(7)= {OL} Ftab (= G



Orbits and stabilisers GrX > K xﬁ K=>X gm=9

Lemma
Suppose 7 is an action of G on X, and let x € X. Then Stab(x) <G.
Proof: (9() = Stab() = fa { 3 [m)c'x}
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Orbits and stabilisers

Examples: Let's work out some examples of orbits and stabilisers. (i) Take any G
and X, and let w be the trivial action. Then for any x € X,

Orb(x) = {x},  Stab(x) = v
®)Take G = Dg, and let X be the set of vertices of the square, numbered 1,2, 3,4 in
clockwise order starting from the top right. Then G acts on X in a natural way:
mg(x) = g(x). Taking x =1, we get
Orb(1) = {1,2,3,4}, Stab(1) = {1, rs} = {Ro, Ri3}.
‘o/Let G be any group, and let 7 be the regular action of G on G. Then any two
elements g, h € G lie in the same orbit, because 7,,-1(g) = h. So this action is

transitive. Stab(h) = {1} for any x € G- ~ o1 (1)=§ 1223:4¢
2 3
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@Let G be any group, and let 7 be the conjugation action of G on G, and let
h € G. Then Orb(h) is just the conjugacy class ccl/(h). Stab(h) is called the
centraliser of h in G; we will see more about this later. /
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Orbit Stabilizer Theorem
Suppose 7 is an action of G on X, and x € X. Then |G| = |Orb(x)||Stab(x)|.
Alternatively . v

There isa Bijection between the orbit O(x) C X and G/StabG(x).jToreovﬁr, the

stabili7ers of an orbit of G is a conjugacy class wrof subgroups 4 )
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Orbits and stabilisers Jormor S,
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We can apply the Orbit—Stabiliser Theorem to find the size of a group when we have
an action that we understand. 6_' X W

Example: Let G be the symmetry group of a cube. Let x be a face of the cube, and let G
act on the set of faces. This is a transitive action, becauseﬁ's easy to see that) you can get
from any face to any other by applying a symmetry of the cube. So [Orb(x)| = 6. Now think
about Stab(x), Notice that any symmetry of the cube which fixes x gives a symmetry of x: a
rotation of the cube gives a rotation of x, and a reflection of the cube gives a reflection of x.
Conversely, any symmetry of x can be extended to a symmetry of the whole cube. So Stab(x)
is isomorphic to the symmetry group of x, which is Dg. In particular, |Stab(x)| = 8. So by the
Orbit-Stabiliser Theorem, |G| =6 x 8 =48.  ~
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Orbits and stabilisers Sg= Sr1x6xEK kx3x2
Example: S ={1,2,3,4,5,6,7,8}. The group of permutation on the set S is

v v
G= {(‘1/), (132)(465)(78),(132)(465) (123 )(456) ('/\23)(456)(78)7 (78)}

_ GxS§—~ S
'/StabG(l) = {(1),(78)} C.‘ xS /———958 ./
Orbg(1) = {1,3,2} 9 5) L
V/Stabs(2) = {(1). (78)) (= ( 2 4678
Orbg(2) = {2,1,3} !

v Stabg(7) = {(1), (123)(456), (132)(465)}
) _ ] 2345 &6 7 8
Orbe(7) = {78} 132465 )(78) $(
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Orbits and stabilisers Rg= 7 [» 414 454,48, 474, 8°8 ¢

Example: G = Djg set of all geomteries of square.
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Centaliser and normaliser

Definition: Suppose G is a group.
e If h € G, the centraliser of h is

Coh={g € G|gh=hg}.
o If H < G, the normaliser of H is
No(H) = {g € GlgHg* = H}.V

Ny h=37e6 | ghg'=h |



Orbits and stabilisers

Proposotion

Suppose G is a group, h € G and H< G. Then h € Cg(h) < G, and
H> G Ng(H) < G.
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Orbit Countin
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Exercise. Let G = GL(2,R) and X = R2. [q)
(1) Show that the map A a [q) = 3

e () (i), 2

c d y cx +dy
an actcon

Exams Style Questions xa c X = X

defines a G action.
(2) What are the orbits and fixed point sets of this G action?
P whem

The collection of all invertible matrices constitutes the general linear group GL(2, R).
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Exams Style Questions

Exercise. Let H < G, and define H action by restricting the map
H x X. Calculate the orbits and fixed point sets in the following cases:

(1) H =S0(2).

(2)H:{(g 0):GER}0}.
a

(3) H= g a‘: ra€R .
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(4) H=
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QMplus Quiz

Attempt Quiz 9 at QMplus page



Some Useful Notations

(Throughout this course, we use the following notation.
@ C, denotes the cyclic group of order n.

o Kilein group often symbolized by the letter V4 or as K4 = Z4 X Z4 denotes the
group {1, a, b, c}, with group operation given by

P =pr=c=1, ab=ba=c, ac=ca=b, bc=cb=a.

@ U, is the set of integers between 0 and n which are prime to n, with the group
operation being multiplication modulo n.




Some Useful Notations

@ Dy, is the group with 2n elements

1, r % .., Y os s, s, .., " ls

The group operation is determined by the relations r” = s> =1 and
sr=r""ls.

@ S, denotes the group of all permutations of {1,..., n}, with the group
operation being composition.

@ GL,(R) is the group of n x n invertible matrices with entries in R, with the
group operation being matrix multiplication.

e Qg is the group {1,—-1,/i,—i,j,—j, k,—k}, in which

P=P2=k>=-1, =k, jk=i, ki=], ji=—k, ki =—i, ik=—j.




	Group Actions
	Orbits and stabilisers
	Orbit Stabilizer Theorem

	Centaliser and normaliser

