

Group Theory

Week 9, Lecture 1, 2&3

Dr Lubna Shaheen

Campus M- XL-US-DJ

Table of Contents

1 Group Actions

Orbits and stabilisers

• Orbit Stabilizer Theorem

 $G_{1}, G_{2}, G_{3}, G_{4} \quad \pi: G \times X \longrightarrow X$ **Group Actions Definition**: Suppose G is a group and X is a set. An action of G on X is a collection $\pi = (\pi_g | g \in G)$ of functions from X to X such that: $\pi:g^{\chi\chi}=\bar{\pi}_{g}(\alpha)=g^{\chi}$ $\checkmark \mathbf{0} \pi_1 = \mathrm{id} \mathbf{x}$. and ✓ ② $\pi_f \circ \pi_g = \pi_{fg}$ for all $f, g \in G$. 不,(れ)= ハス $\Lambda_{g}(\alpha) = g \cdot \alpha$ Examples: Trive Action grapa $T_{g}(a) = \chi$ gxy >> y

Lemma: If π is an action of G on X, then each π_g is a permutation on X.

$$\frac{Phiof:}{g \in G_{1}}, \quad \overline{Ag} \,\overline{Ag^{-1}} = \overline{Ag} \, og^{-1} = \overline{A}_{1} = \overline{Ae} = i d_{K}$$

$$\overline{Ag^{-1}} \,\overline{Ag} = i d_{K},$$

$$\mathcal{So} \quad \overline{Ag} \quad has imverse \quad \mathcal{So} \quad actually$$

$$\overline{Ag} : K \longrightarrow K \quad is \ an \ imverse \ permutation$$

$$\overline{Ag} : K \longrightarrow K \quad G \longrightarrow Sym(K)$$

$$\overline{g} \longmapsto \overline{Ag}$$

Group Actions Examples

- **9** For any X, and a group G we have the trivial action g.x = x for all x
- S_X symmetric group acting on X. Key example. ✓
- $GL_n(R)$ acting on R^n
- GL(V) acting on V
- G group; Aut(G) acting on G.

Examples For any G, we have conjugate action **Group Actions** of G on itself $T_g(x) = g x g^{-1}$

 $G \times G \longrightarrow G$

Action by conjugation

Special case: There is another action on G on itself, but it's not the regular action!

Definition: For $g \in G$, $x \in G$ set $g_x = gxg^{-1}$. Set $\gamma_g(x) = gxg^{-1}$. This is a group action of G on itself, and it is an action by automorphisms: $\gamma_g \in Aut(G)$. We say "x is conjugate to y" if there is $g \in G$ such that $g_x = y$. This is an equivalence relation.

The equivalence classes are called conjugacy classes. Write G/X for the set of equivalence classes. The class of e is $\{e\}$. More generally, the class of x is $\{x\}$ iff $x \in Z(G)$.

Special Remarks: Why is conjugacy important? Because

(1) The action is by automorphisms, so conjugate elements have identical group-theoretic properties (same order, conjugate centralizers etc).

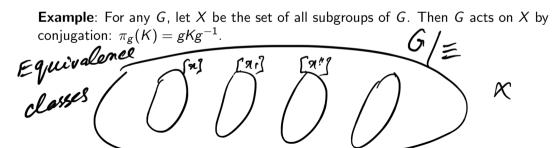
(2) These automorphisms are readily available.

In fact, the map $g\mapsto \gamma_g$ is a group homomorphism $G\to Aut(G)$

The image of this homomorphism is denoted Inn(G) and called the group of inner automorphisms. The kernel is exactly Z(G), so by first isomorphism theorem $Inn(G) \cong G/Z(G)$. Also, if $f \in Aut(G)$ then $f \circ \gamma_g \circ f^{-1} = \gamma_{f(g)}$. So Inn(G) \supseteq Aut(G).

Example: Aut(\mathbb{Z}^d) \cong $GL_d(\mathbb{Z})$ but all inner automorphisms are trivial (the group is commutative).

Example: On the other hand, if $|X| \ge 3$ then $Inn(S_X) = S_X$ (the center is trivial). $Out(S_n) = \{e\}$ except that $Out(S_6) \cong C_2$.



$$\pi_g(\alpha) = g(\alpha) = \mathcal{J} \quad \chi \equiv \mathcal{J}$$

Suppose we have an action π of G on X. We define a relation \equiv on X by saying that $x \equiv y$ if there is some $g \in G$ such that $y = \pi_g(x)$. Lemma: \equiv is an equiavalence relation. **Proof**: Reflexive.

 $\overline{X}_{1}(\mathcal{H}) = \mathcal{X}$ for all \mathcal{H} XEX Symmetrie: Suppose $x \equiv y$, JJEG $\pi_{g}(\alpha) = g(\alpha) = y$

 $\overline{\Lambda}_{g^{-1}}(\gamma) = \overline{\Lambda}_{g^{-1}}(\overline{\Lambda}_{g}(\alpha)) = \chi$ オミル

Transitine: X=y and y= ? $\overline{Ag}(n) = y \notin \overline{Af}(y) = j$ f.geG =>fgeG $\pi_{fg}(\alpha) = \pi_f(\pi_g(\alpha)) = \pi_f(y) = 7$ XEJ

Definition: Suppose π is an action of a group G on a set X. The **orbit** of π are the equivalence classes under the relation \equiv described above. Given $x \in X$, we write Orb(x) for the orbit containing x, i.e.

$$\mathsf{Drb}(x) = \left\{ \pi_g(x) \, | \, g \in G
ight\}$$

The action π is **transitive** if there is only one orbit. Write G/X for the set of orbits.

Definition: Suppose π is an action of a group G on a set X, and let $x \in X$. The stabiliser $Stab(x) = \begin{cases} g \in G \mid \pi_g(x) = x \end{cases}, \quad \begin{array}{c} \mathcal{G}_1 & \mathcal{H} = \mathcal{H} \\ \mathcal{G}_2 & \mathcal{H} = \mathcal{H} \\ \mathcal{G}_2 & \mathcal{H} = \mathcal{H} \end{cases}$ of x is the set $\overline{\Lambda}_{g}(n) = g(n) = \chi$ $\boldsymbol{\pi}:\boldsymbol{G}\boldsymbol{\ltimes}\boldsymbol{\times}\longrightarrow\boldsymbol{\times}\;,$ Example: $Orb(\eta) = \begin{cases} \{\chi\} \\ \end{cases} \end{cases}$ Stab(\eta) = G_7

Drbits and stabilisers
$$G_{XX} \rightarrow X$$
 $T_g: X \rightarrow X$ $g(n) = Y$
Lemma
Suppose π is an action of G on X , and let $x \in X$. Then $Stab(x) \leq G$.
Proof: $\overline{\pi}_1(\pi) = \chi$ $Stab(\pi) = \frac{5}{9} \int g(n) = x \int \overline{\pi}_g(n) = \pi$
 $=> 1 \in Stab(\pi) = \frac{5}{9} \int g(n) = \pi \int \overline{\pi}_g(n) = \pi$
 $Suppose \int g \in G_n$, $\overline{\pi}_f(\pi) = \pi$, $\overline{\pi}_g(n) = \pi$
 $\overline{\pi}_f \overline{\pi}_g \in Stab(n)$
 $\overline{\pi}_f g^{-1}(\pi) = \overline{\pi}_f(\overline{\pi}_g^{-1}(\pi)) = \overline{\pi}_f(\overline{\pi}_g^{-1}(\overline{\pi}_g(n)))$
 $= \overline{\pi}_f(\pi) = \pi$
 $Hence a Subgroup.$

Examples: Let's work out some examples of orbits and stabilisers. (i) Take any G and X, and let π be the trivial action. Then for any $x \in X$,

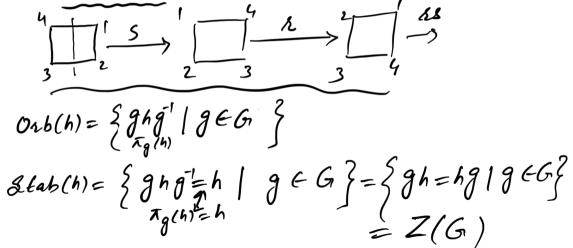
 $Orb(x) = \{x\},$ Stab(x) = G.

Take $G = D_8$, and let X be the set of vertices of the square, numbered 1, 2, 3, 4 in clockwise order starting from the top right. Then G acts on X in a natural way: $\pi_g(x) = g(x)$. Taking x = 1, we get

 $Orb(1) = \{1, 2, 3, 4\},$ $Stab(1) = \{1, rs\} = \{R_0, R_{13}\}.$ Let G be any group, and let π be the regular action of G on G. Then any two $G_{1} = O_{8} = \begin{cases} 1, k, k^{2}, k^{3}, k, k A, k^{2} B, k A, k^{2} B, k^{3} A, k^{3} B, k A, k^{2} B, k^{3} A, k^{3} A, k^{3} B, k A, k^{2} B, k^{3} A, k^{3} B, k^{$ elements $g, h \in G$ lie in the same orbit, because $\pi_{hg^{-1}}(g) = h$. So this action is

$$\pi_g(h) = ghg^{-1} \quad \pi_g: G \longrightarrow G$$

Let G be any group, and let π be the conjugation action of G on G, and let $h \in G$. Then Orb(h) is just the conjugacy class ccl(h). Stab(h) is called the *centraliser* of h in G; we will see more about this later.



161

Q: gStab(a) > Ty (a) V

Orbit Stabilizer Theorem Suppose π is an action of G on X, and $x \in X$. Then |G| = |Orb(x)||Stab(x)|. **Alternatively** There is a bijection between the orbit $O(x) \subseteq X$ and $G/Stab_G(x)$. Moreover, the stabilizers of an orbit of G is a conjugacy class in of subgroups Proof $|G_1| = |G_1: Stab(n)| |Stat}$ The number of left case $Orb(n) = \frac{3}{7} T_g(n) | \frac{3}{7} \in G_1^2$ $Stab(x) \leq G$ where |G: Stab(a) | is of stab (a) in G.

by coset hermona. Orbits and stabilisers fStab(n) = gStab(x) $\overline{\Lambda}_{f}$ -'g(n) = \mathcal{X} $f^{-1}g \in Stab(m),$ $\overline{\Lambda}_{f}(n) = \overline{\Lambda}_{f}(\overline{\Lambda}_{f}^{-1}g(n)) = \overline{\Lambda}_{ff^{-1}}(\overline{\Lambda}_{g}(n)) = \overline{\Lambda}_{g}(n)$ Injective-one-to-one. O(f Stab(m)) = O(g Stab(m)) i.e $X_f(m) = \overline{\Lambda}_g(n)$ => $f'g \in Stab(n)$, so by caset hemma f Stab(n) = g Stab(n)

Orbits and stabilisers Susjective: gEG, Ag(a), Ag(a)= & (g Statan)

We can apply the Orbit-Stabiliser Theorem to find the size of a group when we have an action that we understand. GIXX

Example: Let G be the symmetry group of a cube. Let x be a face of the cube, and let G act on the set of faces. This is a transitive action, because $\overline{(it')}$ easy to see that) you can get from any face to any other by applying a symmetry of the cube. So |Orb(x)| = 6. Now think about Stab(x), Notice that any symmetry of the cube which fixes x gives a symmetry of x: a rotation of the cube gives a rotation of x, and a reflection of the cube gives a reflection of x. Conversely, any symmetry of x can be extended to a symmetry of the whole cube. So Stab(x)is isomorphic to the symmetry group of x, which is \mathcal{D}_8 . In particular, |Stab(x)| = 8. So by the Orbit-Stabiliser Theorem, $|G| = 6 \times 8 = 48$.

Application of Orbit-Stabilizer Theorem

$$S_8 = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$$

Example: $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$. The group of permutation on the set *S* is

$$G = \left\{ (1), (132)(465)(78), (132)(465), (123)(456), (123)(456)(78), (78) \right\}$$

$$G \neq S \rightarrow S$$

$$Stab_{G}(1) = \{(1), (78)\}$$

$$G \neq S \rightarrow S = \left\{ (1), (78)\} \qquad (1) = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array} \right)$$

$$Orb_{G}(2) = \{(1), (123)(456), (132)(465)\} \\ Orb_{G}(7) = \{(1), (123)(456), (132)(465)\} \\ Orb_{G}(7) = \{7, 8\} \qquad (132)(465)(78) = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array} \right)$$

$$\left((78) = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array} \right)$$

Orbits and stabilisers $\mathcal{D}_{g} = \{(\lambda, \lambda^{2}, \lambda^{3}, \lambda, \lambda \delta, \lambda^{2} \delta, \lambda^{3} \delta, \lambda^{$ **Example**: $G = D_8$ set of all geometries of square. $C_{D_g}(\lambda \delta) = \begin{cases} 1, \lambda^2, \lambda \delta, \lambda^3 \delta \\ g & 2 \end{cases}$ $|\mathcal{D}_8| = |CCl(\underline{ss})||C_G(\underline{ss})|$ by orbit - Stabilizer Theorem.

Centaliser and normaliser

Definition: Suppose *G* is a group.

• If $h \in G$, the **centraliser** of h is

$$C_G h = \{g \in G \mid gh = hg\}.$$

• If $\underline{H \leq G}$, the normaliser of H is $N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$ $\bigwedge Ig(h) = \{g \in G \mid gHg^{-1} = H\}.$

Proposotion

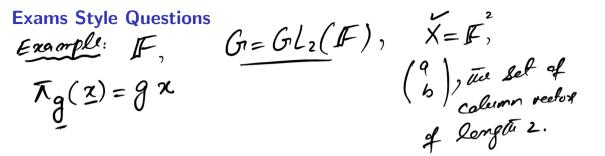
Suppose G is a group, $h \in G$ and $H \leq G$. Then $h \in C_G(h) \leq G$, and $H \supseteq G \supseteq N_G(H) \leq G$.

 $C_{G}(h) \leq G_{T}$

NG(h) is the stability an of H under the conjugation

Orbit Counting Lemma $\bigwedge I_{\mathcal{A}}(h) \leq G_{\mathcal{A}}(h)$

we have For each hEH, hHh-1= 3hbh-1 | beH = H so $H \leq \wedge I_G(H)$, $g \in \Lambda'_G(H)$ $g H g^{-1} = H$ $H \neq \Lambda_{G}(H)$



Exercise. Let $G = GL(2, \mathbb{R})$ and $X = \mathbb{R}^2$.

(1) Show that

the map

$$G \times X \to X, \quad \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}, \quad \text{defines}$$

 $G = GL(2, \mathbb{R}) \text{ and } X = \mathbb{R}^2.$

defines a G action.

(2) What are the orbits and fixed point sets of this G action?

when

The collection of all invertible matrices constitutes the general linear group $GL(2,\mathbb{R})$.

Exercise. Let $H \le G$, and define H action by restricting the map $H \times X$. Calculate the orbits and fixed point sets in the following cases:

(1)
$$H = SO(2)$$
.
(2) $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}.$
(3) $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}.$
(4) $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}.$
(5) $H = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle.$

QMplus Quiz

Attempt Quiz 9 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter V₄ or as K₄ = ℤ₄ × ℤ₄ denotes the group {1, a, b, c}, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and *n* which are prime to *n*, with the group operation being multiplication modulo *n*.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r, r^2, \ldots, r^{n-1}, s, rs, r^2s, \ldots, r^{n-1}s$$
.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- \mathcal{Q}_8 is the group $\{1,-1,i,-i,j,-j,k,-k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.