

Group Theory

Week 9, Lecture 1, 2 & 3

Dr Lubna Shaheen

Table of Contents

Group Actions

- Orbits and stabilisers
 - Orbit Stabilizer Theorem

Centaliser and normaliser

Definition: Suppose G is a group and X is a set. An action of G on X is a collection

$$\pi = (\pi_g | g \in G)$$
 of functions from X to X such that:

- \bullet $\pi_1 = \mathrm{id}_X$, and
- \bullet $\pi_f \circ \pi_g = \pi_{fg}$ for all $f, g \in G$.

Lemma: If π is an action of G on X, then each π_g is a permutation on X.

Examples

- For any X, and a group G we have the trivial action g.x = x for all x
- **②** S_X symmetric group acting on X. Key example.
- GL(V) acting on V
- G group; Aut(G) acting on G.

Group Actions Examples

This is an equivalence relation.

Special case: There is another action on *G* on itself, but it's not the regular action!

Definition: For $g \in G$, $x \in G$ set $g_x = gxg^{-1}$. Set $\gamma_g(x) = gxg^{-1}$.

This is a group action of G on itself, and it is an action by automorphisms:

 $\gamma_g \in Aut(G)$. We say "x is conjugate to y" if there is $g \in G$ such that $g_x = y$.

The equivalence classes are called conjugacy classes. Write G/X for the set of equivalence classes. The class of e is $\{e\}$. More generally, the class of x is $\{x\}$ iff $x \in Z(G)$.

Special Remarks: Why is conjugacy important? Because

- (1) The action is by automorphisms, so conjugate elements have identical group-theoretic properties (same order, conjugate centralizers etc).
- (2) These automorphisms are readily available.

In fact, the map $g\mapsto \gamma_g$ is a group homomorphism $G\to Aut(G)$

The image of this homomorphism is denoted $\operatorname{Inn}(G)$ and called the group of inner automorphisms. The kernel is exactly Z(G), so by first isomorphism theorem $\operatorname{Inn}(G) \cong G/Z(G)$. Also, if $f \in \operatorname{Aut}(G)$ then $f \circ \gamma_g \circ f^{-1} = \gamma_{f(g)}$. So $\operatorname{Inn}(G) \rhd \operatorname{Aut}(G)$.

Example: Aut(\mathbb{Z}^d) \cong $GL_d(\mathbb{Z})$ but all inner automorphisms are trivial (the group is commutative).

Example: On the other hand, if $|X| \ge 3$ then $Inn(S_X) = S_X$ (the center is trivial). $Out(S_n) = \{e\}$ except that $Out(S_6) \cong C_2$.

Example: For any G, let X be the set of all subgroups of G. Then G acts on X by conjugation: $\pi_g(K) = gKg^{-1}$.

Suppose we have an action π of G on X. We define a relation \equiv on X by saying that $x \equiv y$ if there is some $g \in G$ such that $y = \pi_g(x)$.

Lemma: \equiv is an equiavalence relation.

Proof:

Definition: Suppose π is an action of a group G on a set X. The **orbit** of π are the equivalence classes under the relation \equiv described above. Given $x \in X$, we write Orb(x) for the orbit containing x, i.e.

$$\operatorname{Orb}(x) = \left\{ \pi_g(x) \, | \, g \in G \right\}$$

The action π is **transitive** if there is only one orbit. Write G/X for the set of orbits.

Definition: Suppose π is an action of a group G on a set X, and let $x \in X$. The **stabiliser** of x is the set

$$\operatorname{\mathsf{Stab}}(x) = \Big\{ g \in G \,|\, \pi_g(x) = x \Big\}.$$

Lemma

Suppose π is an action of G on X, and let $x \in X$. Then $Stab(x) \leq G$.

Proof:

Examples: Let's work out some examples of orbits and stabilisers. (i) Take any G and X, and let π be the trivial action. Then for any $x \in X$,

$$Orb(x) = \{x\}, Stab(x) = G.$$

• Take $G = \mathcal{D}_8$, and let X be the set of vertices of the square, numbered 1, 2, 3, 4 in clockwise order starting from the top right. Then G acts on X in a natural way: $\pi_g(x) = g(x)$. Taking x = 1, we get

$$Orb(1) = \{1, 2, 3, 4\}, \qquad Stab(1) = \{1, rs\} = \{R_0, R_{13}\}.$$

• Let G be any group, and let π be the regular action of G on G. Then any two elements $g,h\in G$ lie in the same orbit, because $\pi_{hg^{-1}}(g)=h$. So this action is transitive. Stab $(h)=\{1\}$ for any $x\in G$.

 Let G be any group, and let π be the conjugation action of G on G, and let h∈ G. Then Orb(h) is just the conjugacy class ccl(h). Stab(h) is called the centraliser of h in G; we will see more about this later.

Orbit Stabilizer Theorem

Suppose π is an action of G on X, and $x \in X$. Then |G| = |Orb(x)||Stab(x)|. Alternatively

There is a bijection between the orbit $O(x) \subseteq X$ and $G/Stab_G(x)$. Moreover, the stabilizers of an orbit of G is a conjugacy class in of subgroups

Proof:

We can apply the Orbit–Stabiliser Theorem to find the size of a group when we have an action that we understand.

Example: Let G be the symmetry group of a cube. Let x be a face of the cube, and let G act on the set of faces. This is a transitive action, because (it's easy to see that) you can get from any face to any other by applying a symmetry of the cube. So |Orb(x)| = 6. Now think about Stab(x). Notice that any symmetry of the cube which fixes x gives a symmetry of x: a rotation of the cube gives a rotation of x, and a reflection of the cube gives a reflection of x. Conversely, any symmetry of x can be extended to a symmetry of the whole cube. So Stab(x) is isomorphic to the symmetry group of x, which is \mathcal{D}_8 . In particular, |Stab(x)| = 8. So by the Orbit-Stabiliser Theorem, $|G| = 6 \times 8 = 48$.

Example: $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$. The group of permutation on the set S is

$$G = \left\{ (1), (132)(465)(78), (132)(465), (123)(456), (123)(456)(78), (78) \right\}$$

```
\begin{aligned} &\mathsf{Stab}_G(1) = \big\{(1), (78)\big\} \\ &\mathsf{Orb}_G(1) = \{1, 3, 2\} \\ &\mathsf{Stab}_G(2) = \{(1), (78)\} \\ &\mathsf{Orb}_G(2) = \{2, 1, 3\} \\ &\mathsf{Stab}_G(7) = \{(1), (123)(456), (132)(465)\} \\ &\mathsf{Orb}_G(7) = \{7, 8\} \end{aligned}
```

Example: $G = D_8$ set of all geometries of square.

Centaliser and normaliser

Definition: Suppose G is a group.

• If $h \in G$, the **centraliser** of h is

$$C_G h = \{g \in G \mid gh = hg\}.$$

• If $H \leq G$, the **normaliser** of H is

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$$

Proposotion

Suppose G is a group, $h \in G$ and $H \leq G$. Then $h \in C_G(h) \leq G$, and $H \triangleright G \triangleright N_G(H) \leq G$.

Orbit Counting Lemma

Exercise. Let $G = GL(2, \mathbb{R})$ and $X = \mathbb{R}^2$.

(1) Show that the map

$$G \times X \to X, \qquad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix},$$

defines a G action.

(2) What are the orbits and fixed point sets of this G action?

The collection of all invertible matrices constitutes the general linear group $GL(2,\mathbb{R})$.

Exercise. Let H < G, and define H action by restricting the map $H \times X$. Calculate the orbits and fixed point sets in the following cases:

(1)
$$H = SO(2)$$
.

(2)
$$H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}.$$

(3)
$$H = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}_{>0} \right\}.$$
(4) $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}.$

$$(4) H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}$$

(5)
$$H = \left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
.

QMplus Quiz

Attempt Quiz 9 at QMplus page

Some Useful Notations

Throughout this course, we use the following notation.

- C_n denotes the cyclic group of order n.
- Klein group often symbolized by the letter \mathcal{V}_4 or as $\mathcal{K}_4 = \mathbb{Z}_4 \times \mathbb{Z}_4$ denotes the group $\{1, a, b, c\}$, with group operation given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = ba = c$, $ac = ca = b$, $bc = cb = a$.

• U_n is the set of integers between 0 and n which are prime to n, with the group operation being multiplication modulo n.

Some Useful Notations

• \mathcal{D}_{2n} is the group with 2n elements

1,
$$r$$
, r^2 , ..., r^{n-1} , s , rs , r^2s , ..., $r^{n-1}s$.

The group operation is determined by the relations $r^n = s^2 = 1$ and $sr = r^{n-1}s$.

- S_n denotes the group of all permutations of $\{1, \ldots, n\}$, with the group operation being composition.
- $GL_n(\mathbb{R})$ is the group of $n \times n$ invertible matrices with entries in \mathbb{R} , with the group operation being matrix multiplication.
- Q_8 is the group $\{1, -1, i, -i, j, -j, k, -k\}$, in which

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.