
WEEK 9 NOTES

1. UNIQUENESS PROPERTY OF INHOMOGENEOUS LAPLACE EQUATIONS (POISSON
EQUATIONS)

Using the maximum principle, we can show uniqueness of solution to the Laplace and
Poisson equation.

Proposition 1.1. Let Ω ⊂ R2 be an open connected domain, then the Poisson equation on
Ω

∆U = ψ

U |∂Ω = f,

has a unique solution

Proof. Suppose there are 2 solutions U1, U2, then V = U1 − U2 solves the following
Laplace equation {

∆V = ∆U1 −∆U2 = ψ − ψ = 0, in Ω

V |∂Ω = U1|∂Ω − U2|∂Ω = f − f = 0.

Then the maximum principle tells that V ≤ 0 and V ≤ 0. So V ≡ 0.
Namely U1 = U2 and the solution to the Poisson’s equation is unique. □

2. INVARIANT PROPERTIES OF HARMONIC FUNCTIONS

There are some invariant properties of the solutions to the Laplace equations in either
polar or Cartesian coordinates.

In Cartesian coordinates, we have

Proposition 2.1. If U(x, y) is a harmonic function on a disk of radius r centerred at
the origin, then V (x, y) = U(λx, λy) and W (x, y) = U(λx,−λy) are both harmonic
functions on a disk of radius r

λ .

In polar coordinates, we have

Proposition 2.2. If U(r, θ) is a harmonic function on R2 \ {0}, then both V (r, θ) =
U( 1r , θ) and W (r, θ) = U( 1r ,−θ) are harmonic functions on R2 \ {0}.

Both of these 2 properties are left as exercises in the problem sets/Courseworks.

3. BASIC CONCEPTS FOR THE HEAT EQUATION

In this chapter we study the 1 + 1-dimensional heat equation —this is the paradigmatic
example of parabolic equations:

Ut − κUxx = 0,

with κ the so-called diffusivity constant. In 3 + 1 dimensions the equation is given by

Ut − κ
(
Uxx + Uyy + Uzz

)
= 0.

1



2 WEEK 9 NOTES

Thus, time independent solutions (i.e. with Ut = 0) satisfy the Laplace equation

∆U = 0.

We will interested in the following:
(i) The boundary value problem. Here one prescribes U at t = 0 and on x = a,

x = b.
(ii) The heat equation on the whole line. In this case there are no boundary condi-

tions and one only prescribes U at t = 0.

The heat equation has a wide range of applications in the study of heat propagation,
diffusion of substances in a medium, finance, geometry...

3.1. General remarks. Consider the 1 + 1 heat equation in the form

Ut = κUxx, κ > 0.(3.1)

Geometrically, given a function U(x, t), the second derivative Uxx is the rate of change of
slope (at fixed time) —that is, it determines whether the graph of U (for fixed t) is concave
or convex. On the other hand, Ut is the rate of change of U(x, t) at some fixed point. Thus,
one has that

Ut > 0 if the graph of U(x,t) (for fixed t) is convex,
Ut = 0 if the graph is a straight line,
Ut < 0 if the graph is concave.

Thus, at all points x where Uxx > 0 we have that U(x, t) increases in time , and at
points where Uxx < 0 we have that U(x, t) is decreasing in time.

Note. The previous discussion shows that the effect of the heat equation is to smooth out
bumps.

Example 3.1. Consider the function

U(x, t) = 1 + e−κt cosx.

It can be checked to satisfy the heat equation. Plots of this function for various times are
given below.
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The plots show an initial central concentration spreading out an becoming more and
more uniform as t increases. Observe, in particular how U increases where Uxx > 0 and
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decreases where Uxx < 0. Changing the value of κ affects the rate of smoothing: larger κ
means faster smoothing and viceversa.

3.2. Boundary conditions. Recall that when solving first order ode’s one needs one con-
dition on the unknown (initial condition) to determine fully the solution. Since we want
to predict the distribution of concentration/temperature U(x, t) for all t > 0 and the heat
equation has only one derivative in time, then at every x we need to prescribe one initial
condition for U(x, t) at t = 0 —that is

U(x, 0) = f(x).

On the other hand, since Ut = κUxx contains Uxx and x ∈ (a, b), we need to prescribe
boundary conditions at the end points a and b at each time. This is consistent with the
general principle for ode’s that to solve second order boundary value problems one needs
two boundary conditions (one at each point). These boundary conditions are determined
by physical modelling and might contain U and Ux. The most common types are:

(i) Dirichlet boundary conditions. Here one prescribes

U(a, t) = h(t), U(b, t) = g(t).

These boundary conditions correspond to the temperature/concentration at the
endpoints.

(ii) Neumann boundary conditions. Here one prescribes

Ux(a, t) = h(t), Ux(b, t) = g(t).

In this case one prescribes a flux of U rather than U itself. In particular, if

Ux(a, t) = Ux(b, t) = 0,

the endpoints are insulated —i.e. no flux.
(iii) Mixed boundary conditions. One can also have situations as

Ux(a, t) = h(t), U(b, t) = g(t),

or
U(a, t) = h(t), Ux(b, t) = g(t).

(iv) Periodic boundary conditions. One can also have

U(−a, t) = U(a, t)

or
Ux(−a, t) = Ux(a, t).

4. THE HEAT EQUATION ON AN INTERVAL

In this section we will see how the method of separation of variables can be used to ob-
tain solutions to the heat equation on an interval. More precisely, we consider the following
problem:

Ut = κUxx, x ∈ [0, L], t > 0,

U(x, 0) = f(x),

U(0, t) = 0, U(L, t) = 0.

The boundary conditions describe, for example, a metallic wire whose ends are set (by
means of some device) at a temperature of 0 degrees.
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4.1. Separation of variables. Following the general strategy of the method we consider
solutions of the form

U(x, t) = X(x)T (t).

Substitution into the heat equation gives

X(x)Ṫ (t) = κX ′′(x)T (t).

Hence, dividing by XT we find that

Ṫ (t)

κT (t)
=
X ′′(x)

X(x)
.

We observe that the left hand side of this last expression only depends on x. The right hand
side depends only on t. Thus, for the equality to hold one needs both sides to be constant.
That is, one has that

Ṫ (t)

κT (t)
=
X ′′(x)

X(x)
= −λ,

Thus, we end up with the following ordinary differential equations:

Ṫ = −κ − λT,(4.1a)
X ′′ = −λX.(4.1b)

Moreover, from the boundary conditions one has that

X(0)T (t) = 0, X(L)T (t) = 0,

so that

(4.2) X(0) = X(L) = 0.

4.2. Solving the equation for X(x). Combining equation (4.1b) with the boundary con-
ditions (4.2) one obtains the eigenvalue problem

X ′′ = −λX,
X(0) = X(L) = 0.

Notice we have already proved the following claim about eigenvalues when studying wave
equations.

Claim 4.1. The eigenvalues λ ≥ 0.

Thus, the general solution to equation (4.1b) is given by

X(x) = A cos
√
λx+B sin

√
λx.

Now, we make use of the boundary conditions. First we observe that

X(0) = A cos 0 +B sin 0.

Thus, from (4.2) it follows that
A = 0.

Using now X(L) = 0 one finds that

B sinλL = 0.

Clearly one needs B ̸= 0 to get a non-trivial solution. Thus
√
λ =

πn

L
, n = 1, 2, . . .
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Hence, the solution to the eigenvalue problem is given (ignoring the constant B) by

Xn(x) = sin

(
πnx

L

)
, λn =

π2n2

L2
.

4.3. Solving the equation for T (t). Now knowing λ = π2n2

L2 , we can solve for T

Tn(t) = Ce−λnκt = Ce−
π2n2

L2 κt, C a constant.

4.4. General solution. The calculations from the previous sections can be combined to
obtain the family of solutions to the heat equation

Un(x, t) = Xn(x)Tn(t) = e−
π2n2

L2 κt sin

(
πnx

L

)
.

The general solution is then applied using the principle of superposition:

(4.3) U(x, t) =

∞∑
n=1

anUn =

∞∑
n=1

ane
−π2n2

L2 κt sin

(
πnx

L

)
.

4.5. Initial conditions. The an constants that are fixed through the initial conditions.
Evaluating (4.3) at t = 0 one has

f(x) =

∞∑
n=1

an sin

(
πnx

L

)
.

This is a Fourier sine series —we have already found these series a couple of times before.
The coefficients an are then determined via the Fourier coefficients —thus,

an =
2

L

∫ L

0

f(x) sin

(
πnx

L

)
dx.

4.6. Examples. We now look at some concrete examples of the discussion in the previous
paragraphs.

Example 4.2. Let the initial conditions be given by

f(x) = sin
(πx
L

)
.

It follows then that

U(x, 0) =

∞∑
n=1

an sin
(nπx
L

)
= sin

(πx
L

)
.

Comparing the two sides of the last equality, and given that the sine functions in the infinite
series are independent of each other one finds that

a1 = 1, an = 0, n ≥ 2.

Thus, the particular solution to the heat equation is given by

U(x, t) = e−π2κt/L2

sin
(πx
L

)
.

A plot of the solution for various values of t is given below. Observe that

U(x, t) → 0, as t→ ∞.
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Example 4.3. Let the initial conditions be given by

f(x) = 1, x ∈ [0, L].

In this case we have to explicitly compute the Fourier coefficients —this is because the
constant function does not appear in the series. One has that

an =
2

L

∫ L

0

sin
(nπx
L

)
dx = − 2

nπ
cos

(nπx
L

) ∣∣∣∣L
0

= − 2

nπ

(
(−1)n − 1)

=

{
0 n even
4

nπ
n odd

Hence, one can write

U(x, t) =
4

π

∞∑
n odd

e−n2π2κt/L2

sin
(nπx
L

)
.

A plot of the solution for various values of t > 0 is given below:
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Observe that the solution for t > 0 instantly drops to 0 at the ends. Observe that for
n ≥ 3 one has that

e−π2κt/L2

>> e−9π2κt/L2

.

Thus, one has that

U(x, t) ≈ 4

π
e−π2κt/L2

sin
(πx
L

)
.

In other words, the first term in the infinite series dominates.

Example 4.4. Let L = 1 and

f(x) =

{
1 0 < x < 1/2
0 1/2 < x < 1

.

Again, we need to compute explicitly the Fourier coefficients. In this case we have

an = 2

∫ 1/2

0

sin(nπx)dx = − 2

nπ
cos(nπx)

∣∣∣∣1/2
0

= − 2

nπ

(
cos(

nπ

2
)− 1

)
.

Hence,

U(x, t) =
2

π

∞∑
n=1

(
1− cosnπ/2

n

)
e−n2π2κt sinnπx.

Observe that
1− cos

nπ

2
= 1, 2, 1, 0, 1, 2, . . . .

A plot of the solution for various t > 0 is given below:
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Observe that initially one has a step. The solution immediately becomes smooth. It gets
more symmetric and sinusoidal as time increases.

Next, let’s consider a mixed boundary condition problem for heat equations on an inter-
val.

Example 4.5. 
Ut − Uxx = 0, x ∈ [0, π2 ]

U(x, 0) = 2 cosx

Ux(0, t) = 0, U(π2 , t) = 0.

Here we have the heat constant κ = 1.
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Suppose we have a separated variable solution U(x, t) = X(x)T (t), we then get

XṪ = X ′′T

Ṫ

T
=
X ′′

X
= −λ,

where λ is a constant. As before, this gives us 2 ODEs

X ′′ = −λX

Ṫ = −λT.

Combing the ODE of X with the boundary conditions give us the following boundary
value problem.

X ′′ = −λX

X ′(0) = 0, X(
π

2
) = 0.

As before, using the boundary conditions and integration by parts, we can show that the
eigenvalues satisfy λ > 0 and so the general solutions for X is

X(x) = A cos
√
λx+B sin

√
λx

X ′(x) = −A
√
λ sin

√
λx+B

√
λ cos

√
λx.

Using the first boundary condition, we get

0 = X ′(0) = 0 +B
√
λ.

So B = 0 and A ̸= 0. Using the second boundary condition, we get

0 = X ′(L) = A cos
√
λL.

So
√
λL = nπ − 1

2π.
We get the eigenvalues are λn = (2n− 1)2, for n = 1, 2 . . . and the eigenfunctions are

Xn(x) = cos[(2n− 1)x].

Knowing λn, we can go back to solve the ODE Ṫ = −λnT for T and get

Tn(t) = e−(2n−1)2t.

Then general solutions are

U(x, t) =

∞∑
n=1

anXn(x)Tn(t) =

∞∑
n=1

ane
−(2n−1)2t cos[(2n− 1)x].

Next, we use the initial condition to specify the a′ns. When t = 0, we have

2 cosx = U(x, 0) =

∞∑
n=1

an cos[(2n− 1)x].

By the orthogonality of the cos[(2n − 1)x] trigonometric functions, we “observe” that
an = 0 except for n = 1. Moreover, the n = 1 term have to match and so a1 = 2. Thus
the solution to this question is

U(x, t) = 2e−t cosx.
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Example 4.6. 
Ut − Uxx = 0, x ∈ [0, π]

U(x, 0) = 1 + 2 cosx

Ux(0, t) = 0, Ux(π, t) = 0.

First look for solutions of the form U = XT and get XṪ = X ′′T , and so

Ṫ

T
=
X ′′

X
= −λ.

The eigenvalue problem for X is

{
X ′′ = −λX
X ′(0) = X ′(π) = 0.

We know that the eignevlaues are λ ≥ 0.
If λ > 0, we have{

X(x) = A cos
√
λx+B sin

√
λx

X ′(x) = −A
√
λ sin

√
λx+B

√
λ cos

√
λx

X ′(0) = 0 tells us that B = 0.
X ′(π) = 0 tells us that

√
λπ = nπ. So{

λn = n2

Xn(x) = cosnx

for n ≥ 1.
Knowing λn, we can solve for Ṫ = −λT can get

Tn(t) = e−n2t.

If λ = 0, we have X(x) = ax+ b, the boundary conditions then gives a = 0. So{
λ0 = 0

X0(x) = 1

The corresponding solutions for T is T0(t) = 0.
The general solutions are then

U(x, y) =

∞∑
n=0

anXn(x)Tn(t) = a0 +

∞∑
n=1

ane
−n2t cosnt.

Using the initial conditions we have when t = 0 that

1 + 2 cosx = U(x, 0) = a0 +

∞∑
n=1

an cosnt.

So we observe that an = 0 except for n = 0, 1. And a0 = 1, a1 = 2. The solution is then

U(x, t) = 1 + 2−t cosx.



10 WEEK 9 NOTES

5. ENERGY FOR HEAT EQUATION ON THE INTERVAL AND APPLICATIONS

Recall that the wave equation has an energy quantity that was preserved along time,
which was useful in proving uniqueness of solutions to the wave equations. We can also
define an energy quantity for the heat equation.

Consider the heat equation on the interval with fixed boundary condition from the last
section

Ut = κUxx, x ∈ [0, L], t > 0,

U(x, 0) = f(x),

U(0, t) = 0, U(L, t) = 0.

We define the energy to be

E[U ](t) =
1

2

∫ L

0

U2(x, t)dx.

Proposition 5.1. The energy is non-increasing along time. It’s preserved along time if and
only if U is constant.

Proof.

d

dt
E[U ](t) =

d

dt

[
1

2

∫ L

0

U2(x, t)dx

]

=
1

2

∫ L

0

2U(x, t)Ut(x, t))dx

=κ
∫ L

0

U(x, t)Uxx(x, t))dx

=κU · Ux|L0 −
∫ L

0

κ(Ux)
2dx

=− κ
∫ L

0

(Ux)
2dx

≤0.

So the energy is non-increasing along time.
Since U2

x ≥ 0, so the energy is preserved if and only if Ux ≡ 0.
If Ux ≡ 0, we have Uxx ≡ 0 and Ut = κUxx =≡ 0. So if the energy is preserved along

time, U must be constant. □

By the Wirtinger inequality (we will use it here without proof): if f satisfies f(0) =
f(L) = 0 on the interval [0, L], we must have

∫ L

0

[f2(x)]dx ≤ C0

∫ L

0

[f ′(x)]2dx,
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for some universal constant C0 > 0. Using this we have the energy satisfies

d

dt
E[U ](t) ≤− κ

∫ L

0

(Ux)
2dx

≤−κ
C0

∫ L

0

U2dx

=
−2κ
C0

E[U ](t).

This gives the decay of energy

E[U ](t) ≤ E[U ](0) · e
−2κ
C0

t → 0,

as t→ ∞.
As an application of the non-increasing of energy, we show the uniqueness of solutions

of heat equations on interval with initial and boundary conditions.

Theorem 5.2. Let U1 and U2 are 2 solutions to the following heat equation an interval
with initial and Dirichlet boundary conditions:

Ut = κUxx, x ∈ [0, L]

U(x, 0) = f(x)

U(0, t) = h(t), U(L, t) = g(t).

Then we must have U1 ≡ U2.

Proof. Let V (x, t) = U1(x, t)−U2(x, t). Then by the principle of superposition, we have
V satisfies the equation

Vt = κVxx, x ∈ [0, L]

V (x, 0) = 0

V (0, t) = 0, V (L, t) = 0.

The energy at time t = 0 is E[V ](0) = 0. By the non-increasing of energy Proposition 5.1
d
dtE[V ](t) ≤ 0 and the fact that E[V ](t) ≥ 0, we must then have

E[V ](t) ≡ 0.

So V ≡ 0 for all t ≥ 0 and U1 = U2. □


